地理学报 ›› 2016, Vol. 71 ›› Issue (5): 807-816.doi: 10.11821/dlxb201605009

• 生态 • 上一篇    下一篇

流域土壤有效厚度水平衡验证及其对陆面水碳通量模拟的影响

黄日超(), 陈喜(), 孙一萌, 高满, 程勤波, 张永生   

  1. 河海大学水文水资源与水利工程科学国家重点实验室 水文水资源学院,南京 210098
  • 收稿日期:2016-01-19 修回日期:2016-03-24 出版日期:2016-05-25 发布日期:2016-05-25
  • 作者简介:

    作者简介:黄日超(1990-), 男, 江西石城人, 硕士, 主要从事生态水文过程模拟研究。E-mail: hhuhrc@163.com

  • 基金资助:
    国家自然科学基金重大项目(51190091)

Validation of watershed soil effective depth based on water balance and its effect on simulation of land surface water-carbon flux

Richao HUANG(), Xi CHEN(), Yimeng SUN, Man GAO, Qinbo CHENG, Yongsheng ZHANG   

  1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
  • Received:2016-01-19 Revised:2016-03-24 Online:2016-05-25 Published:2016-05-25
  • Supported by:
    Key Project of National Natural Science Foundation of China, No.51190091

摘要:

由于土壤特性和植被分布具有区域性,不同流域土壤有效厚度存在差异,进而影响土壤蓄水容量和陆面水碳等通量的时空分布。以湿润地区的东江流域,湿润、半湿润地区的淮河流域以及半湿润、半干旱地区的泾河流域为研究对象,采用LPJ动态植被模型,以水量平衡为目标率定土壤有效厚度,分析不同气候区典型流域土壤有效厚度以及土壤蓄水容量和陆面水碳通量(径流量R,实际蒸散发量ET和净初级生产力NPP)变化。结果表明:东江、淮河、泾河流域的土壤有效厚度分别为70 cm、90 cm和140 cm,土壤有效厚度和蓄水容量随着气候干旱程度增加而增加;土壤有效厚度的修正有效减低该模型水平衡误差,对陆面水碳通量模拟结果的影响程度与区域气候条件有关,湿润地区多年平均径流深和实际蒸散发修正前后变化显著,半湿润、半干旱地区NPP变化显著。研究成果为提高LPJ模型在不同气候区应用可靠性提供参考依据。

关键词: 土壤有效厚度, 土壤蓄水容量, 实际蒸散发, 净初级生产力, 动态植被模型

Abstract:

The soil effective depths are different due to regional features of various types of soils and vegetation, which impacts spatial and temporal distribution of soil moisture storage capacity and land surface water-carbon flux. In this study, the soil effective depth was calibrated using LPJ dynamic vegetation model on the target of remaining watershed water balance in three climate regions (Dongjiang River watershed in humid areas, Huaihe River watershed in humid, semi-humid areas and Jinghe River watershed in semi-humid and semi-arid areas). On this basis, we examined soil moisture storage capacity and land surface water-carbon flux (runoff R, actual evapotranspiration ET and net primary productivity NPP) resulting from variation of the soil effective depth. The results indicated that the estimated soil effective depth is 70 cm in the Dongjiang watershed, 90 cm in the Huaihe watershed and 140 cm in the Jinghe watershed. The soil effective depth and soil moisture storage capacity increase with the increase of drought degree. The correction of the soil effective depth in terms of water balance effectively reduces the simulation error, and affects the simulated results of the land surface water-carbon flux. However, the large or small effect is related to climatic conditions. The annual mean runoff and actual evapotranspiration change significantly in the humid areas, while the NPP changes significantly in the humid and semi-humid areas. The results provide a reference for improving the reliability of application of the LPJ model in different climate regions.

Key words: soil effective depth, soil moisture storage capacity, actual evapotranspiration, net primary productivity, dynamic vegetation model