地理学报 ›› 2016, Vol. 71 ›› Issue (4): 564-575.doi: 10.11821/dlxb201604003
刘瑜
收稿日期:
2015-08-24
发布日期:
2020-05-22
作者简介:
刘瑜(1971-), 男, 山东诸城人, 教授, 博士生导师, 中国地理学会会员(S110007302M), 主要研究方向为地理信息科学。E-mail: liuyu@urban.pku.edu.cn
基金资助:
LIU Yu
Received:
2015-08-24
Online:
2020-05-22
Supported by:
摘要: 近年来,不同类型大数据在地理研究中得到了越来越多的重视,许多学者基于手机、社交媒体、出租车等数据开展了大量实证研究。社会感知概念刻画了地理空间大数据基于大量人的行为时空模式获取地理环境特征的的技术手段,该手段有助于重新审视地理学研究中的一些基本问题,因而本文选择了空间分布和空间交互这两个基本地理概念以及定性方法和定量方法这两个人文地理基本研究方法展开讨论。大数据从微观个体和宏观群体两个层面同时感知空间分布和空间交互,可以定量分析其中的距离以及尺度效应。进而,由于小样本访谈人群和场所是定性研究的基础,而大数据可以通过定量方法识别特定人群和场所并进行刻画,因此,社会感知手段为集成定性和定量研究方法,构建混合地理学奠定了基础。
刘瑜. 社会感知视角下的若干人文地理学基本问题再思考[J]. 地理学报, 2016, 71(4): 564-575.
LIU Yu. Revisiting several basic geographical concepts:A social sensing perspective[J]. Acta Geographica Sinica, 2016, 71(4): 564-575.
[1] Batty M. Big data, smart cities and city planning. Dialogues in Human Geography, 2013, 3(3): 274-279. [2] Goodchild M F. The quality of big (geo)data. Dialogues in Human Geography, 2013, 3(3): 280-284. [3] Kitchin R. Big data and human geography: Opportunities, challenges and risks. Dialogues in Human Geography, 2013, 3(3): 262-267. [4] Miller H J, Goodchild M F. Data-driven geography. GeoJournal, 2015, 80(4): 449-461. [5] Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socio-economic environments. Annals of the Association of American Geographers. 2015, 105(3): 512-530. [6] Liu Y, Wang F H, Xiao Y, et al. Urban land uses and traffic "source-sink areas": Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 2012, 106: 73-87. [7] Liu X, Kang C G, Gong L, et al. Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 2016, 30(2): 334-350. [8] Pei T, Sobolevsky S, Ratti C, et al. A new insight into land use classification based on aggregated mobile phone data.International Journal of Geographical Information Science, 2014, 28(9): 1988-2007. [9] Liu X, Gong L, Gong Y X, et al. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 2015, 43: 78-90. [10] Ratti C, Sobolevsky S, Calabrese F, et al. Redrawing the map of Great Britain from a network of human interactions.PLoS ONE, 2010, 5(12): e14248. [11] Cai B F, Wang J N, Long Y, et al. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach. Journal of Environmental Management. 2015, 164: 206-214. [12] Crooks A, Croitoru A, Stefanidis A, et al. Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 2013,17(1): 124-147. [13] Li L N, Goodchild M F, Xu B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr.Cartography and Geographic Information Science, 2013, 40(2): 61-77. [14] Yang W, Mu L, Shen Y. Effect of climate and seasonality on depressed mood among twitter users. Applied Geography,2015, 63: 184-191. [15] Gong Jianhua, Lin Hui. Exploring human- oriented GIS. Geomatics and Information Science of Wuhan University,2006, 31(8): 704-708. [龚建华, 林珲. 面向地理环境主体GIS 初探.武汉大学学报(信息科学版). 2006, 31(8): 704-708.] [16] Zhen Feng, Wang Bo. Rethinking human geography in the age of big data. Geographical Research, 2015, 34(5): 803-811. [甄峰, 王波.“大数据”热潮下人文地理学研究的再思考. 地理研究, 2015, 34(5): 803-811.] [17] Getis A. Spatial interaction and spatial autocorrelation: A cross-product approach. Environment and Planning A, 1991,23(9): 1269-1277. [18] Fischer M M, Reismann M, Scherngell T. Spatial interaction and spatial autocorrelation. In: Anselin L, Rey S J (ed.)Perspectives on Spatial Data Analysis, 2010: 61-79. [19] Ullman E L. Geography as spatial interaction. Annals of Association of the American Geographers, 1954, 44: 283-284. [20] Hartshorne R. The concept of geography as a science of space, from Kant and Humboldt to Hettner. Annals of the Association of American Geographers, 1958, 48(2): 97-108. [21] Castells, M. The rise of the network society. The information age: Economy, society and culture. 1996, 1, Blackwell,Oxford. [22] ToblerW. A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, 46(2): 234-240. [23] Goodchild M F. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 2004, 94(2): 300-303. [24] Sui D. Tobler's first law of geography: A big idea for a small world? Annals of the Association of AmericanGeographers, 2004, 94(2): 269-277. [25] Miller H J. Tobler's First Law and spatial analysis. Annals of the Association of American Geographers, 2004, 94(2):284-289. [26] Reades J, Calabrese F, Ratti C. Eigenplaces: Analysing cities using the space – time structure of the mobile phonenetwork. Environment and Planning B: Planning and Design, 2009, 36(5): 824-836. [27] Kang C G, Liu Y, Ma X J, et al. Towards estimating urban population distributions from mobile call data. Journal of Urban Technology, 2012, 19(4): 3-21. [28] Dodds P S, Harris K D, Kloumann I M, et al. Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE, 2011, 6(12): e26752. [29] Fotheringham A, O'Kelly M E. Spatial Interaction Models: Formulations and Applications. 1989, Kluwer. [30] Liu Y, Sui Z W, Kang C G, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media checkindata. PLoS ONE, 2014, 9(1): e86026. [31] Zhao Z, Li S, Liu J, et al. The distance decay of similarity in climate variation and vegetation dynamics. EnvironmentalEarth Sciences, 2015, 73(8): 4659-4670. [32] Liu Y, Tong D Q, Liu X. Measuring spatial autocorrelation of vectors. Geographical Analysis, 2015, 47(3): 300-319. [33] Weber J, Kwan Mei-Po. Bringing time back in: A study on the influence of travel time variations and facility opening hours on individual accessibility. The Professional Geographer, 2002, 54(2): 226-240. [34] Couclelis H. Misses, near-misses and surprises in forecasting the informational city. In: Miller H J (ed.) Societies and Cities in the Age of Instant Access. The GeoJournal Library, vol. 88, Berlin, Germany: Springer. 2007: 71-83. [35] Miller H J. Place-based versus people-based geographic information science. Geography Compass, 2007, 1(3): 503-535. [36] Cairncross F. The Death of Distance: How the Communications Revolution will Change Our Lives. Harvard Business Press, 2001. [37] Kang C G, Zhang Y, Ma X J, et al. Inferring properties and revealing geographical impacts of intercity mobile communication network of China using a subnet data set. International Journal of Geographical Information Science,2013, 27(3): 431-448. [38] Longley P, Goodchild M F, Maguire D J, et al. Geographic Information Science and Systems. 4th ed.Wiley, 2015.[39] Openshaw S. The Modifiable Areal Unit Problem. Norwick: Geo Books, 1983. [40] Armhein C. Searching for the elusive aggregation effect: Evidence from statistical simulations. Environment & Planning A, 1995, 27(1): 105-119. [41] Kwan Mei-Po. Beyond binaries: Reflections on hybrid geographies. Progress in Human Geography, 2013, 32(9): 1307-1315. [关美宝. 超越地理学二元性: 混合地理学的思考. 地理科学进展, 2013, 32(9): 1307-1315.] [42] Kwan Mei-Po. From oral histories to visual narratives: Re-presenting the post-September 11 experiences of the Muslim women in the United States. Social and Cultural Geography, 2008, 9(6): 653-669. [43] Krenchel M, Madsbjerg C. Your big data is worthless if you don't bring it into the real world. 2014. http://www.wired.com/2014/04/your-big-data-is-worthless-if-you-dont-bring-it-into-the-real-world/ [44] Wang D G, Chai YW. The jobs-housing relationship and commuting in Beijing, China: the legacy of Danwei. Journal of Transport Geography, 2009, 17(1): 30-38. [45] González M C, Hidalgo C A, Barabási A B. Understanding individual human mobility patterns. Nature, 2008: 458, 779-782. [46] Xie Y. Population heterogeneity and causal inference. Proceedings of the National Academy of Sciences of the USA,2013, 110(16): 6262-6268. [47] Long Y, Liu X J, Zhou J P, et al. Early birds, night owls, and tireless/recurring itinerants: An exploratory analysis ofextreme transit behaviors in Beijing, China. 2015, arXiv:1502.02056. [48] Shi L, Chi G G, Liu Xi, et al. Human mobility patterns in different communities: a mobile phone data based social network approach. Annals of GIS, 2015, 21(1): 15-26. [49] Wainwright J, Barnes T. Nature, economy, and the space-place distinction. Environment and Planning D: Society and Space, 2009, 27: 966- 986. [50] Agnew J. Space and place//Agnew J, Livingstone D ed. Handbook of Geographical Knowledge. London, Sage: 2011. [51] Goodchild M F. Space, place and health. Annals of GIS, 2015, 21(2): 97-100. [52] Tuan Y F. Space and Place: The Perspective of Experience. Minneapolis: University of Minnesota Press, 1977. [53] Sui D, Goodchild M F. The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 2011, 25(11): 1737-1748. [54] Smith B, Varzi A. Fiat and bona fide boundaries. Philosophy and Phenomenological Research, 2000, 60(2): 401-420. [55] Gao S, Li L N, Li W W, et al. Constructing gazetteers from volunteered Big Geo-Data based on Hadoop. Computers,Environment and Urban Systems. doi: 10.1016/j.compenvurbsys.2014.02.004. [56] Liu Y, Yuan Y H, Xiao D Q, et al. A point- set- based approximation for areal objects: A case study of representing localities. Computers, Environment and Urban Systems, 2010, 34(1): 28-39. [57] Mu L, Wang F H. A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data.Annals of the Association of American Geographers, 2008, 98(1): 85-101. [58] Golledge R G. The nature of geographical knowledge. Annals of the Association of American Geographers, 2002, 92(1):1-14. [59] Gong L, Liu X, Wu L, et al. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartography and Geographic Information Science. 2016, 43(2): 103-114. [60] Lazer D, Kennedy R, King G, et al. The parable of Google Flu: Traps in big data analysis. Science, 2014, 343(6176):1203-1205. |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 李萌, 袁文, 袁武, 牛方曲, 李汉青, 胡段牧. 基于新闻大数据的北极地区地缘关系研究[J]. 地理学报, 2021, 76(5): 1090-1104. |
[3] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[4] | 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725. |
[5] | 关皓明, 杨青山, 浩飞龙, 冯章献. 基于“产业—企业—空间”的沈阳市经济韧性特征[J]. 地理学报, 2021, 76(2): 415-427. |
[6] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[7] | 刘瑜, 姚欣, 龚咏喜, 康朝贵, 施迅, 王法辉, 王姣娥, 张毅, 赵鹏飞, 朱递, 朱欣焰. 大数据时代的空间交互分析方法和应用再论[J]. 地理学报, 2020, 75(7): 1523-1538. |
[8] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[9] | 易嘉伟, 王楠, 千家乐, 马廷, 杜云艳, 裴韬, 周成虎, 涂文娜, 刘张, 王会蒙. 基于大数据的极端暴雨事件下城市道路交通及人群活动时空响应[J]. 地理学报, 2020, 75(3): 497-508. |
[10] | 童昀, 马勇, 刘海猛. COVID-19疫情对中国城市人口迁徙的短期影响及城市恢复力评价[J]. 地理学报, 2020, 75(11): 2505-2520. |
[11] | 周扬, 黄晗, 刘彦随. 中国村庄空间分布规律及其影响因素[J]. 地理学报, 2020, 75(10): 2206-2223. |
[12] | 陈小强, 袁丽华, 沈石, 梁晓瑶, 王元慧, 王翔宇, 叶思菁, 程昌秀, 宋长青. 中国及其周边国家间地缘关系解析[J]. 地理学报, 2019, 74(8): 1534-1547. |
[13] | 林晓,徐伟,杜德斌,杨凡. 上海市风险投资企业的空间分布与“技术—资本”地理邻近性[J]. 地理学报, 2019, 74(6): 1112-1130. |
[14] | 王建邦, 赵军, 李传华, 朱钰, 康重阳, 高超. 2001-2015年中国植被覆盖人为影响的时空格局[J]. 地理学报, 2019, 74(3): 504-519. |
[15] | 裴韬, 刘亚溪, 郭思慧, 舒华, 杜云艳, 马廷, 周成虎. 地理大数据挖掘的本质[J]. 地理学报, 2019, 74(3): 586-598. |