地理学报 ›› 2015, Vol. 70 ›› Issue (7): 1114-1124.doi: 10.11821/dlxb201507008

• 气候变化 • 上一篇    下一篇

近10年来可可西里地区主要湖泊冰情时空变化

姚晓军1(), 李龙1, 赵军1, 孙美平1,2, 李净1, 宫鹏1, 安丽娜1   

  1. 1. 西北师范大学地理与环境科学学院,兰州 730070
    2. 中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室,兰州 730000
  • 收稿日期:2015-03-21 修回日期:2015-05-15 出版日期:2015-07-20 发布日期:2015-08-11
  • 作者简介:

    作者简介:姚晓军(1980-), 男, 山西夏县人, 博士, 副教授, 主要从事地理信息技术与冰冻圈变化研究。E-mail: xj_yao@nwnu.edu.cn

  • 基金资助:
    国家自然科学基金(41261016);甘肃省高等学校科研项目(2014A-001, 2013A-018)

Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011

Xiaojun YAO1(), Long LI1, Jun ZHAO1, Meiping SUN1,2, Jing LI1, Peng GONG1, Lina AN1   

  1. 1. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China
    2. State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China
  • Received:2015-03-21 Revised:2015-05-15 Online:2015-07-20 Published:2015-08-11
  • Supported by:
    National Natural Science Foundation of China, No.41261016;Scientific Research Project of Higher Learning Institution in Gansu Province, No.2014A-001, No.2013A-018

摘要:

基于2000-2011年可可西里地区湖泊边界矢量数据、MODIS和Landsat TM/ETM+遥感影像和气象数据等资料,利用RS和GIS技术综合分析该地区主要湖泊冰情变化特征及其影响因素。结果表明:① 可可西里地区湖泊开始结冰和完全结冰出现在每年的10月下旬至11月上旬和11月中旬至12月上旬,湖泊由开始冻结至完全冻结持续时间约半个月;湖冰开始消融和完全消融时间较为分散,主要出现在每年的4月下旬至6月初和5月初至6月上旬,湖泊完全封冻期和封冻期为181 d和196 d。② 2000-2011年间,可可西里地区湖冰物候特征发生了显著变化,湖泊开始冻结和完全冻结时间推迟,湖冰开始消融和完全消融时间提前,湖泊完全封冻期和封冻期持续时间普遍缩短,平均变化速率分别为-2.21 d/a和-1.91 d/a。③ 湖冰物候特征及湖泊冰情演变是区域气候变化和湖泊自身条件共同作用的结果,其中气温、湖泊面积、湖水矿化度和湖泊形态是影响湖冰物候特征的主要因素,而湖泊热储量、地质构造等因素对湖冰演化的作用亦不可忽视。④ 可可西里地区湖泊冻结空间模式与消融过程相反,以湖冰由湖泊一岸扩展到另一岸的湖泊数量居多。

关键词: 湖冰, 湖泊, 物候, 气候变化, 可可西里, MODIS

Abstract:

Based on the boundary data of lakes, some moderate-high resolution remote sensing datasets including MODIS and Landsat TM/ETM+ images and the meteorological data, the spatial-temporal variations of lake ice in the Hoh Xil region during the period 2000-2011 are analyzed by using RS and GIS technology. And the factors affecting the lake ice phenology are also discussed. Some conclusions can be drawn as follows. (1) The freeze-up start (FUS) and freeze-up end (FUE) of lake ice appears in late October - early November, and mid-November - early December, respectively. The duration of lake ice freeze-up is about half a month. The time of break-up start (BUS) and break-up end (BUE) of lake ice is relatively dispersed, and appears in late April - early June, and early May - early June, respectively. The ice duration (ID) and the complete ice duration (CID) of lakes are 196 days and 181 days, respectively. (2) The phenology of lake ice in the Hoh Xil region changed dramatically in the last 10 years. Specifically, the FUS and FUE time of lake ice showed an increasingly delaying trend. In contrast, the BUS and BUE time of lake ice presented an advance. This led to the reduction of the ID and CID of lake ice. The average rates of ID and CID were -2.21 d/a and -1.91 d/a, respectively. (3) The variations of phenology and evolution of lake ice are the results of local and climatic factors. The temperature, lake area, salinity and shape of the shoreline are the main factors affecting the phenology of lake ice. (4) The spatial process of lake ice freeze-up is contrary to its break-up process. The type of lake ice extending from one side of lakeshore to the opposite side is dominant in the Hoh Xil region.

Key words: lake ice, lake, phenology, climate change, Hoh Xil region, MODIS