地理学报 ›› 2015, Vol. 70 ›› Issue (5): 809-818.doi: 10.11821/dlxb201505011
占车生1(), 董晴晴2(
), 叶文2, 王会肖2, 王飞宇1,3
收稿日期:
2015-01-09
修回日期:
2015-04-08
出版日期:
2015-05-20
发布日期:
2015-05-20
作者简介:
作者简介:占车生(1975-), 男, 湖北黄冈人, 副研究员, 主要从事流域水循环模拟研究。E-mail:
基金资助:
Chesheng ZHAN1(), Qingqing DONG2(
), Wen YE2, Huixiao WANG2, Feiyu WANG1,3
Received:
2015-01-09
Revised:
2015-04-08
Published:
2015-05-20
Online:
2015-05-20
Supported by:
摘要:
本文系统综述了基于水文模型的蒸散发数据同化研究,阐述了蒸散发作为非状态变量构建数据同化演算关系的难点和瓶颈,并系统分析了利用当前各种通用水文模型进行蒸散发同化的可行性。基于此,尝试提出了一种易于操作且具有水循环物理机制的蒸散发同化新方案,该方案利用具有蒸散发—土壤湿度非线性时间响应关系的分布式时变增益模型(DTVGM),并进一步完善DTVGM蒸散发机理,构建基于DTVGM水文模型的蒸散发数据同化系统。该新方案将为区域蒸散发精确模拟提供新的思路和借鉴。
占车生, 董晴晴, 叶文, 王会肖, 王飞宇. 基于水文模型的蒸散发数据同化研究进展[J]. 地理学报, 2015, 70(5): 809-818.
Chesheng ZHAN, Qingqing DONG, Wen YE, Huixiao WANG, Feiyu WANG. A review on evapotranspiration data assimilation based on hydrological models[J]. Acta Geographica Sinica, 2015, 70(5): 809-818.
表1
不同水文模型蒸散发同化可行性对比
水文模型 | ETa计算方法 | 构建ETa同化的可行性 | 参考文献 |
---|---|---|---|
SWAT | 由冠层截留、植物蒸腾与土壤水分蒸发计算组成,属折算法 | ETa = ETwater + f(sd,wc) + f(ETP,LAI) , ETa包括水面蒸发、裸地蒸发和植被蒸腾,无时间递推条件,不适合构建显式同化关系 | [30]、[31] |
VIC | 由植被冠层截留、植被蒸腾和裸土蒸发组成,属汇总法 | ETa = Ec + ETveg +ETsoil , ETa由不同的植被类型决定,通过叶面积指数、植被阻抗和植被根系在土壤中的比例计算。无ETa时间递推关系,不适合构建蒸散发的显式同化关系 | [32]、[33] |
SHE | 利用Penman-Monteith公式计算,属汇总法 | ETa由气候条件、冠层含水量及土壤含水量等决定,无ETa的时间递推条件,不适合构建显式同化关系 | [34]、[31] |
VIP | 基于Penman-Monteith公式的冠层和地表双源能量平衡模拟,属汇总法 | ETa = Ec + Es,ETa由冠层蒸腾和地表蒸发计算,由净辐射、冠层阻力、饱和水汽压差等决定,无ETa时间递推条件,不适合构建蒸散发的显式同化关系 | [35]、[36]、[37] |
MIKE SHE | Penman-Monteith和Kristensen-Jensen方法,属汇总法 | ETa= Ec + Esoil+ Ewater + Eveg,ETa由截留蒸发、土壤与水面蒸发和植被蒸腾计算,没有ETa时间递推条件,不适合构建蒸散发的显式同化关系 | [31]、[38]、[39]、[40] |
TOPMODEL | 根据蒸发能力EP计算,属折算法 | ETa与植被根系区缺水量和最大蓄水容量、蒸发能力有关,无ETa时间递推条件,不适合构建蒸散发的显式同化关系 | [31]、[41]、[42]、[43] |
IHDM | 根据土壤水势梯度求解(the EVAP routine),属折算法 | [44]、[45]、[46] | |
新安江 | 蒸散发三层计算模式,属折算法 | ETa主要与气候和下垫面条件,流域上、下层蓄水容量以及深根植物覆盖面积等相关,无ETa递推计算条件,不适合构建蒸散发的显式同化关系 | [47]、[48] |
HIMS | 采用概念性模型,与土壤蓄水量和潜在蒸发有关,属折算法 | ETa的计算与土壤蓄水量、太阳辐射、汽化潜热和气温有关,无ETa时间递推条件,不适合构建蒸散发的显式同化关系 | [10]、[49] |
DTVGM | 考虑土壤湿度的改进Bagrov模型,属折算法 | 建立了ETa与降水、土湿和潜在蒸散发的平衡关系,可以通过土湿间接构建显式同化关系 | [50] |
[1] | Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100(2): 81-92. |
[2] | Rosenberg N J.Microclimate: The Biological Environment. New York: John Wiley & Sons, 1983. |
[3] | Kustas W P, Norman J M.Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 1996, 41(4): 495-516. |
[4] | Vinukollu R K, Wood E F, Ferguson C R, et al.Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data. Remote Sensing of Environment, 2011, 115(3): 801-823. |
[5] | Liu Sanchao, Zhang Wanchang, Gao Maofang, et al.Simulation of land surface evapotranspiration using distributed hydrological model, remote sensing and GIS technology. Scientia Geographica Sinica, 2007, 27(3): 354-358. |
[刘三超, 张万昌, 高懋芳, 等. 分布式水文模型结合遥感研究地表蒸散发. 地理科学, 2007, 27(3): 354-358.] | |
[6] | Renard B, Kavetski D, Kuczera G, et al.Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research, 2010, 46(5): W05521. |
[7] | Li Z, Tang R, Wan Z, et al.A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 2009, 9(5): 3801-3853. |
[8] | Liang Shunlin, Li Xin, Xie Xianhong, et al.Land Surface Observations, Modeling and Data Assimilation. Beijing: Higher Education Press, 2013. |
[梁顺林, 李新, 谢先红, 等. 陆面观测、模拟与数据同化. 北京: 高等教育出版社, 2013.] | |
[9] | Conradt T, Wechsung F, Bronstert A.Three perceptions of the evapotranspiration landscape: Comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances. Hydrology and Earth System Sciences Discussions, 2013, 10(1): 1127-1183. |
[10] | Liu Changming, Zheng Hongxing, Wang Zhonggen, et al.Distributed Simulation of Water Cycle. Zhengzhou: Yellow River Conservancy Press, 2006. |
[刘昌明, 郑红星, 王中根, 等. 流域水循环分布式模拟. 郑州: 黄河水利出版社, 2006.] | |
[11] | Song Xiaomeng, Zhan Chesheng, Kong Fanzhe, et al.A review on uncertainty analysis of large-scale hydrological cycle modeling system. Acta Geographica Sinica, 2011, 66(3): 396-406. |
[宋晓猛, 占车生, 孔凡哲, 等. 大尺度水循环模拟系统不确定性研究进展. 地理学报, 2011, 66(3): 396-406.] | |
[12] | Tang H, Li Z L.Estimation and validation of evapotranspiration from thermal infrared remote sensing data//Quantitative Remote Sensing in Thermal Infrared. Springer Berlin Heidelberg, 2014: 145-201. |
[13] | Pan M, Wood E F, Wójcik R, et al.Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 2008, 112(4): 1282-1294. |
[14] | Qin C, Jia Y, Su Z, et al.Integrating remote sensing information into a distributed hydrological model for improving water budget predictions in large-scale basins through data assimilation. Sensors, 2008, 8(7): 4441-4465. |
[15] | Xie X, Zhang D.Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources, 2010, 33(6): 678-690. |
[16] | Xu X, Li J, Tolson B A.Progress in integrating remote sensing data and hydrologic modeling. Progress in Physical Geography, 2014, doi: 10.1177/0309133314536583. |
[17] | Spies R R, Franz K J, Hogue T S, et al.Distributed hydrologic modeling using satellite-derived potential evapotranspiration. Journal of Hydrometeorology, 2014, 16(1): 129-146. |
[18] | Li Xin, Huang Chunlin, Che Tao, et al.Progress and prospect of research on land data assimilation system in China. Progress in Natural Science, 2007, 17(2): 163-173. |
[李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻. 自然科学进展, 2007, 17(2): 163-173.] | |
[19] | Moradkhani H.Hydrologic remote sensing and land surface data assimilation. Sensors, 2008, 8(5): 2986-3004. |
[20] | Chen H, Yang D, Hong Y, et al.Hydrological data assimilation with the Ensemble Square-Root-Filter. Advances in Water Resources, 2013, 59: 209-220. |
[21] | Schuurmans M, Troch A, Veldhuizen A, et al.Assimilation of remotely sensed latent heat flux in a distributed hydrological model. Advances in Water Resources 2003, 26(2): 151-159. |
[22] | Pipunic C, Walker P, Western A.Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sensing of Environment, 2008, 112(4): 1295-1305. |
[23] | Irmak A, Kamble B.Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation. Irrigation Science, 2009, 28(1): 101-112. |
[24] | Dumedah G, Coulibaly P.Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data. Advances in Water Resources, 2013, 53: 231-241. |
[25] | Lei F, Huang C.Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China. Advances in Water Resources, 2014, 67: 32-45. |
[26] | Trudel M, Leconte R.Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations. Journal of Hydrology, 2014, 514: 192-201. |
[27] | Immerzeel W, Droogers P.Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 2008, 349(3/4): 411-424. |
[28] | Xu Zongxue, Cheng Lei.Progress on studies and applications of the distributed hydrological models. Journal of Hydraulic Engineering, 2010, 1(3): 5-6. |
[徐宗学, 程磊. 分布式水文模型研究与应用进展. 水利学报, 2010, 1(3): 5-6.] | |
[29] | Zhao Lingling, Xia Jun, Xu Chongyu, et al.A review of evapotranspiration estimation methods in hydrological models. Acta Geographica Sinica, 2013, 68(1): 127-136. |
[赵玲玲, 夏军, 许崇育, 等. 水文循环模拟中蒸散发估算方法综述. 地理学报, 2013, 68(1): 127-136.] | |
[30] | Arnold J G, Williams J R, Srinivasan R, et al.Large area hydrologic modeling and assessment Part I: Model development. Journal of the American Water Resources Association, 1998, 34(1): 73-89. |
[31] | Xu Zongxue, et al.Hydrological Model. Beijing: Science Press, 2008. |
[徐宗学, 等. 水文模型. 北京:科学出版社, 2009.] | |
[32] | Liang X, Lettenmaier D P, Wood E F.A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres (1984-2012), 1994, 99(D7): 14415-14428. |
[33] | Yu Z, Deng J, Liu C.Application of VIC model to hydrological response caused by urbanization in Dongjiang basin. Journal of Water Resources Research, 2014, 3(1): 78-83. |
[余增鑫, 邓家泉, 刘诚. VIC 模型在东江流域城市化水文响应研究中的应用. 水资源研究, 2014, 3(1): 78-83] | |
[34] | Freeze R A, Harlan R L.Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology, 1969, 9(3): 237-258. |
[35] | Wang Yongfen, Mo Xingguo.Simulation seasonal and interannual variations of ecosystem evapotranspiration and its components in Inner Mongolia steppe with VIP model. Journal of Plant Ecology, 2008, 32(5): 1052-1060. |
[王永芬, 莫兴国. 基于VIP 模型对内蒙古草原蒸散季节和年际变化的模拟. 植物生态学报, 2008, 32(5): 1052-1060.] | |
[36] | Mo X, Liu S.Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agricultural and Forest Meteorology, 2001, 109(3): 203-222. |
[37] | Wang Kun, Mo Xingguo, Lin Zhonghui, et al.Improvement and validation of vegetation interface process model. Chinese Journal of Ecology, 2010, 29(2): 387-394. |
[王昆, 莫兴国, 林忠辉, 等. 植被界面过程(VIP)模型的改进与验证. 生态学杂志, 2010, 29(2): 387-394.] | |
[38] | Refshaard J C, Storm B, Singh V P. MIKE SHE. Computer Models of Watershed Hydrology, 1995: 809-846. |
[39] | Vázquez R F.Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment. Journal of Hydrology, 2003, 270(3): 309-327. |
[40] | Huang Yue, Chen Xi, Bao Anming, et al.Distributed hydrological modeling in Kaidu Basin: MIKE-SHE model calibration and uncertainty estimation. Journal of Glaciology and Geocryology, 2010, 32(3): 567-572. |
[黄粤, 陈曦, 包安明, 等. 开都河流域山区径流模拟及降雨输入的不确定性分析. 冰川冻土, 2010, 32(3): 567-572.] | |
[41] | Beven K J, Kirkby M J.A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Journal, 1979, 24(1): 43-69. |
[42] | Li Zhijia, Zhang Ke, Yao Cheng.Comparison of distributed geological models based on GIS technology and DEM. Journal of Hydraulic Engineering, 2006, 37(8): 1022-1028. |
[李致家, 张珂, 姚成. 基于GIS的DEM 和分布式水文模型的应用比较. 水利学报, 2006, 37(8): 1022-1028.] | |
[43] | Beven K J, Kirkby M J, Schofield N, et al.Testing a physically based flood-forecasting model (TOPMODEL) for three UK catchments. Journal of Hydrology, 1984, 69(1-4): 119-143. |
[44] | Beven K, Calver A, Morris E M.The Institute of Hydrology distributed model. UK: Institute of Hydrology. Report No.98, 1987: 1-33. |
[45] | Feddes R A, Kowalik P, Kolinska-Malinka K, et al.Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 1976, 31(1): 13-26. |
[46] | Feddes R A, Kowallk P, Neuman S P, et al.Finite difference and finite element simulation of field water uptake by plants. Hydrological Sciences Journal, 1976, 21(1): 81-98. |
[47] | Hao Zhenchun, Li Li, Wang Jiahu, et al.Theory and Method of Distributed Hydrological Model. Beijing: Science Press, 2010. |
[郝振纯, 李丽, 王加虎, 等. 分布式水文模型理论与方法. 北京: 科学出版社, 2010.] | |
[48] | Cao Lijuan, Liu Jingmiao, Ren Liliang.Improving on the evapotranspiration calculation of Xinanjinag model. Hydrology, 2005, 25(3): 5-9, 19. |
[曹丽娟, 刘晶淼, 任立良. 对新安江模型蒸散发计算的改进. 水文, 2005, 25(3): 5-9, 19.] | |
[49] | Wu Mengying, Wang Zhonggen, Dang Suzhen.Simulation and analysis of runoff in the upper reaches of the Heihe River basin. Resources Science, 2012, 34(10): 1913-1921. |
[吴梦莹, 王中根, 党素珍. 基于HIMS 的黑河上游山区径流模拟分析. 资源科学, 2012, 34(10): 1913-1921.] | |
[50] | Xia Jun, Wang Gangsheng, Lv Aifeng.A research on distributed time variant gain modeling. Acta Geographica Sinica, 2003, 58(5): 789-796. |
[夏军, 王纲胜, 吕爱峰. 分布式时变增益流域水循环模拟. 地理学报, 2003, 58(5): 789-796.] | |
[51] | Xia J, O'Connor K M, Kachroo R K, et al. A non-linear perturbation model considering catchment wetness and its application in river flow forecasting. Journal of Hydrology, 1997, 200(1): 164-178. |
[52] | Xia Jun.Theory and Method of Hydrologic Nonlinear. Wuhan: Wuhan University Press, 2002. |
[夏军. 水文非线性理论与方法. 武汉: 武汉大学出版社, 2002.] | |
[53] | Xia Jun, Wang Gangsheng, Tan Ge, et al.Hydrology nonlinear systems and distributed time-variant gain model. Science in China (Series D), 2004, 34(11): 1062-1071. |
[夏军, 王纲胜, 谈戈, 等. 水文非线性系统与分布式时变增益模型. 中国科学(D 辑), 2004, 34(11): 1062-1071.] | |
[54] | Li L, Xia J, Xu C, et al.Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. Journal of Hydrology, 2010, 390(3): 210-221. |
[55] | Xia Jun, Ye Aizhong, Wang Gangsheng.A distributed time-variant gain model applied to Yellow River (I): Model theories and structures. Engineering Journal of Wuhan University, 2005, 38(6): 10-15. |
[夏军, 叶爱中, 王纲胜. 黄河流域时变增益分布式水文模型(I)-模型的原理与结构. 武汉大学学报(工学版), 2005, 38(6): 10-15.] | |
[56] | Zhao Lingling.The evapotranspiration estimation methods study in hydrological cycle simulation [D]. Beijing: University of Chinese Academy of Sciences, 2013. |
[赵玲玲. 流域水文循环模拟的蒸散发估算方法研究[D]. 北京: 中国科学院大学, 2013.] | |
[57] | Andersen J, Dybkjaer G, Jensen K H, et al.Use of remotely sensed precipitation and leaf area index in a distributed hydrological model. Journal of Hydrology, 2002, 264(1): 34-50. |
[58] | Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 2003, 53(4): 343-367. |
[59] | Yin Jian, Zhan Chesheng, Gu Hongliang, et al.A case study of evapotranspiration data assimilation based on hydrological model. Advances in Earth Science, 2014, 29(9):1075-1084. |
[尹剑, 占车生, 顾洪亮, 等. 基于水文模型的蒸散发数据同化实验研究. 地球科学进展, 2014, 29(9): 1075-1084.] | |
[60] | Zhang Ronghua, Du Junping, Sun Rui.Review of estimation and validation of regional evapotranspiration based on remote sensing. Advances in Earth Science, 2012, 27(12):1295-1307. |
[张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述. 地球科学进展, 2012, 27(12): 1295-1307.] |
[1] | 张永强, 孔冬冬, 张选泽, 田静, 李聪聪. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594. |
[2] | 袁玉, 方国华, 陆承璇, 颜敏. 基于景观生态学的城市化背景下洪灾风险评估[J]. 地理学报, 2020, 75(9): 1921-1933. |
[3] | 林峰, 陈兴伟, 姚文艺, 方艺辉, 邓海军, 吴杰峰, 林炳青. 基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析[J]. 地理学报, 2020, 75(5): 1065-1078. |
[4] | 阮宏威,于静洁. 1992-2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1292-1304. |
[5] | 叶红,张廷斌,易桂花,李景吉,别小娟,刘栋,罗琳玲. 2000-2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报, 2018, 73(11): 2117-2134. |
[6] | 初征, 郭建平, 赵俊芳. 东北地区未来气候变化对农业气候资源的影响[J]. 地理学报, 2017, 72(7): 1248-1260. |
[7] | 杨志远, 高超, 臧淑英, 杨秀春. SWIM模型在东北黑土区流域的适用性评价——以乌裕尔河中上游流域为例[J]. 地理学报, 2017, 72(3): 457-470. |
[8] | 黄日超, 陈喜, 孙一萌, 高满, 程勤波, 张永生. 流域土壤有效厚度水平衡验证及其对陆面水碳通量模拟的影响[J]. 地理学报, 2016, 71(5): 807-816. |
[9] | 赵玲玲, 夏军, 许崇育, 王中根, 苏磊. 水文循环模拟中蒸散发估算方法综述[J]. 地理学报, 2013, 68(1): 127-136. |
[10] | 胡珊珊, 郑红星, 刘昌明, 于静洁, 王中根. 气候变化和人类活动对白洋淀上游水源区径流的影响[J]. 地理学报, 2012, 67(1): 62-70. |
[11] | 李宝富, 陈亚宁, 李卫红, 曹志超. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J]. 地理学报, 2011, 66(9): 1230-1238. |
[12] | 刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588. |
[13] | 张守红, 刘苏峡, 莫兴国, 舒畅, 孙杨, 张春. 阿克苏河流域气候变化对潜在蒸散量影响分析[J]. 地理学报, 2010, 65(11): 1363-1370. |
[14] | 李道峰,田英,刘昌明. 黄河河源区变化环境下分布式水文模拟[J]. 地理学报, 2004, 59(4): 565-573. |
[15] | 莫兴国,刘苏峡,林忠辉,陈丹,赵卫民. 无定河流域水量平衡变化的模拟[J]. 地理学报, 2004, 59(3): 341-348. |