地理学报 ›› 2015, Vol. 70 ›› Issue (3): 407-419.doi: 10.11821/dlxb201503005

• • 上一篇    下一篇

青藏高原增温效应对垂直带谱的影响

姚永慧1(), 徐美2, 张百平1,3()   

  1. 1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2. 中国水利水电科学研究院,北京 100044
    3. 江苏省地理信息资源开发与利用协同创新中心,南京 210023
  • 收稿日期:2014-11-30 修回日期:2015-01-27 出版日期:2015-03-20 发布日期:2015-06-14
  • 作者简介:

    作者简介:姚永慧(1975-), 女, 湖北安陆人, 博士, 中国地理学会会员(S110007303M), 主要从事GIS、RS应用与山地环境研究。E-mail: yaoyh@lreis.ac.cn

  • 基金资助:
    国家自然科学基金(41001278, 41030528)

Implication of the heating effect of the Tibetan Plateau for mountain altitudinal belts

Yonghui YAO1(), Mei XU2, Baiping ZHANG1,3()   

  1. 1. State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. Institute of Water Resources and Hydropower Research, Beijing 100044, China
    3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • Received:2014-11-30 Revised:2015-01-27 Online:2015-03-20 Published:2015-06-14
  • Supported by:
    National Natural Science Foundation of China, No.41001278, No.41030528

摘要:

青藏高原作为巨大的热源对亚洲气候、高原生态格局等产生重要的影响。但青藏高原的增温效应最初是20世纪50年代因其对亚洲气候的重大影响而被发现的,因此,大量的相关研究主要集中在高原夏季增温对气候的影响方面,而高原增温效应对高原地理生态格局的影响研究却非常少。利用收集到的气象台站观测数据、基于MODIS地表温度估算的青藏高原气温数据、林线数据和垂直带谱数据及DEM数据,通过对比分析高原内部与外围山区垂直带谱高度的变化及林线的分布规律,并以高原内部与边缘地区相同海拔高度上的气温差、最热月10 ℃等温线、15 ℃·月的温暖指数等温度指标来定量描述高原的增温效应及其对垂直带谱和林线的影响。研究结果表明:① 由于青藏高原增温效应的影响,高原内部气温和生长季长度高于边缘地区,相同海拔高度上,高原内部各月气温比边缘地区高2~7 ℃;在4500 m高度上,高原内部各月气温比四川盆地高3.58 ℃(4月)到6.63 ℃(6月);最热月10 ℃等温线的海拔高度也从东部边缘(4000 m以下)向内部逐渐升高,在拉萨-改则一带则可出现在4600~5000 m的高度;15 ℃·月的温暖指数的海拔高度也从边缘向内部逐渐升高,在4500 m的海拔高度上,横断山区、高原南部和中部地区的温暖指数均能达到15 ℃·月以上,而其它边缘地区则都低于15 ℃·月。② 青藏高原垂直带谱和林线的分布规律与增温效应的规律极其一致,即均从东部边缘向内部逐渐升高,表明增温效应抬升了高原内部垂直带谱的分布范围和高度:山地暗针叶林带的分布范围在高原内部比东部边缘地区高1000~1500 m;山地草甸带的分布范围在高原内部比东部边缘高出700~900 m;高原内部林线比外围地区高500~1000 m左右。最热月10 ℃等温线和15 ℃·月温暖指数的分布规律与林线分布规律一致,表明高原增温效应对垂直带谱的分布具有重要的影响。

关键词: 青藏高原, 增温效应, 垂直带谱, 林线, 温暖指数, 10 ℃等值线

Abstract:

The immense and towering Tibetan Plateau (TP) acts as a heating source and shapes the climate of both the Eurasian continent and the entire world. The heating effect of the TP was first noticed by meteorological scientists in the 1950s due to the important implications of the plateau for Asian climate. Most researches focused on its role as the heat source in summer and its implications for Asian climate, but little has been done on the quantitative information about the heating effect of the plateau and its implications for the position of mountain altitudinal belts (MABs). Using estimated air temperature data, observed meteorological data, MAB / treeline data and ASTER GDEM data, this paper compares the position / height of MABs and alpine treelines between the main TP and the surrounding mountains / lowland and explains the spatial pattern of MAB / treeline of TP from the point of view of the heating effect. The results demonstrate the following important characteristics. (1) Due to the heating effect of TP, the air temperatures and the length of growing season gradually increase from the eastern edge to the interior main TP. The monthly mean air temperature in the interior main plateau is approximately 2-7 ℃ higher than that in the surrounding mountains and adjacent lowland areas. At an elevation of 4500 m (corresponding to the mean altitude of the TP), the monthly mean temperature differences between the plateau and the Sichuan Basin range from 3.58 °C (April) to 6.63 °C (June); the height of the 10°C isotherm of the warmest month goes upward from the edge to the interior of the plateau, which is 4000 m in the Qilian Mts. and its eastern edges, while uplifts to 4600-5000 m are observed along the belt of Lhasa- Zuogong; the warmth index at the altitude of 4500 m in the interior main TP can reach 15°C / month, but it is lower than 15°C / month on the eastern edges and the northern parts of the TP. (2) In terms of air temperatures, the height of the 10°C isotherm of the warmest month and the warmth index gradually increase from the easternmost to the interior of the main plateau; MABs and treeline follow a similar trend rising inwards, the dark-coniferous forest is distributed at an altitude of 1000-1500m higher in the interior main plateau than on the eastern edges, and the alpine steppe belts are about 700-900 m higher in the interior main plateau than on the eastern edges.

Key words: Tibetan Plateau, heating effect, mountain altitudinal belt, treeline, the warmth index, the 10°C isotherm in the warmest month