地理学报 ›› 2015, Vol. 70 ›› Issue (2): 214-233.doi: 10.11821/dlxb201502004

• • 上一篇    下一篇

区域旅游流空间结构的高铁效应及机理——以中国京沪高铁为例

汪德根1,2(), 陈田3(), 陆林4, 王莉4   

  1. 1. 苏州大学旅游系,苏州 215123
    2. 北亚利桑那大学地理、规划与休闲系,美国亚利桑那 弗拉格斯塔夫 86001
    3. 中国科学院地理科学与资源研究所,北京 100101
    4. 安徽师范大学国土资源与旅游学院,芜湖 241002
  • 收稿日期:2013-12-23 修回日期:2014-12-24 出版日期:2015-02-20 发布日期:2015-06-17
  • 作者简介:

    作者简介:汪德根(1973-), 男, 安徽黄山人, 博士, 副教授, 硕士生导师, 中国地理学会会员(S110008276M), Northern Arizona University访问学者, 主要研究高铁旅游和城市旅游。E-mail: wdg713@163.com

  • 基金资助:
    国家自然科学基金重点项目(41230631);国家自然科学基金项目(41271134);National Natural Science Foundation of China, No.41271134

Mechanism and HSR effect of spatial structure of regional tourist flow: Case study of Beijing-Shanghai HSR in China

Degen WANG1,2(), Tian CHEN3(), Lin LU4, Li WANG4, August Lew ALAN2   

  1. 1. Tourism Department of Soochow University, Suzhou 215123, Jiangsu, China
    2. Department of Geography, Planning and Recreation, Northern Arizona University, Flagstaff Arizona 86001, USA
    3. Institute of Geographic Sciences and Natural Research, CAS, Beijing 100101, China
    4. College of Territorial Resources and Tourism in Anhui Normal University, Wuhu 241002, Anhui, China
  • Received:2013-12-23 Revised:2014-12-24 Online:2015-02-20 Published:2015-06-17
  • Supported by:
    Key Project of National Natural Science Foundation of China, No.41230631

摘要:

交通是影响旅游流空间结构最主要因素之一。以京沪高铁线为例,探讨了区域旅游流空间结构的高铁效应及特征,在此基础上,分析区域交通可达性变化,并结合区域旅游资源禀赋、区域旅游接待设施、区域旅游交通网络密度以及区位等影响因素分析区域旅游流空间结构的高铁效应的机理。研究表明:① 区域旅游流空间结构的高铁效应表现为马太效应、过滤效应、扩散效应和叠加效应等特征。② 区位条件、旅游资源禀赋、旅游接待能力、交通网络密度以及时空压缩程度等影响因素共同作用均非常明显态势下,产生高铁马太效应;旅游资源禀赋、旅游接待能力、交通网络密度均不强,时空压缩程度不显著等旅游节点产生高铁过滤效应;区位条件、旅游资源禀赋、旅游接待能力和交通网络密度均具有很强优势,且时空压缩程度明显等旅游节点可成为扩散源,高铁强化了扩散源旅游流集聚作用,然后向边缘旅游地扩散,呈现为“集聚—扩散”模式;高铁使大尺度空间的不同客源地居民出游空间范围出现叠加现象,但只有区位条件、旅游资源禀赋、旅游接待能力、交通网络密度优势较强且时空压缩程度明显旅游节点产生叠加效应。

关键词: 旅游流, 空间结构, 高铁效应, 机理, 京沪高铁, 中国

Abstract:

Transportation is one of the most important factors affecting spatial structure of tourist flow. Taking Beijing-Shanghai High-speed Rail (Hereinafter referred to as the HSR) as an example, the paper firstly explores the features and HSR effects of spatial structure of regional tourist flow with the help of social network analysis method. And then it points out the changes of the accessibility in regional transportation. After analyzing the following various influencing factors, e.g. the initial endowment of regional tourist resources, the hospitality facilities, the density of regional tourism transportation network, the location, etc., the paper discusses about the mechanism of HSR effect of spatial structure in regional tourist flow. The results are shown as follows: (1) The HSR effects of spatial structure in regional tourist flow are manifested as the "Matthew effect", the "filtering effect", the "diffusion effect" and the "overlying effect"; (2) The "Matthew effect" of HSR is manifested under the obvious interaction of the location condition, the initial endowment of tourist resources, hospitality capacity, tourist transportation network density and the "time-space compression"; the "filtering effect" of HSR is manifested in those tourism nodes without favorable location condition, endowment of tourist resources, hospitality capacity, tourist transportation network density, and obvious "time-space compression"; For those tourist nodes that boast favorable advantages in terms of location condition, endowment of tourist resources, hospitality capacity, tourist transportation network density and obvious "time-space compression", they will become diffusion sources. HSR will strengthen the aggregation effects of tourist flow in those diffusion sources, and thereafter, will diffuse to the peripheral tourist areas, manifesting the mode of "aggregation-diffusion"; HSR has resulted in the multiplicity phenomenon in terms of tourists' traveling spatial range for those from large-scale spaces. However, the "overlying effect" is only generated in those tourist nodes with favorable location condition, endowment of tourist resources, hospitality capacity, tourist transportation network density, and obvious "time-space compression".

Key words: tourist flow, spatial structure, HSR effect, mechanism, Beijing-Shanghai HSR