Please wait a minute...
 
快速检索 图表检索 引用检索 高级检索
地理学报  2014, Vol. 69 Issue (9): 1295-1304    DOI: 10.11821/dlxb201409005
  水文水资源 本期目录 | 过刊浏览 | 高级检索 |
西北干旱区气候变化对水文水资源影响研究进展
陈亚宁, 李稚, 范煜婷, 王怀军, 方功焕
中国科学院新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐830011
Research progress on the impact of climate change on water resources in the arid region of Northwest China
CHEN Yaning, LI Zhi, FAN Yuting, WANG Huaijun, FANG Gonghuan
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China
全文: PDF(499 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 西北干旱区是对全球变化响应最敏感地区之一,研究分析全球变暖背景下的西北干旱区水资源问题,对应对和适应未来气候变化带来的影响具有重要意义.本文通过对西北干旱区气候变暖影响下的水资源形成、转化与水循环等关键问题最新研究成果的总结分析,得出如下结论:(1) 西北干旱区温度、降水在过去的50 年出现过"突变型"升高,但进入21 世纪,温度和降水均处于高位震荡,升高趋势减弱;(2) 西北干旱区冬季温度的大幅升高是拉动年均温度抬升的重要原因,而西伯利亚高压活动和二氧化碳排放是引起冬季升温的重要影响因素;(3) 西北干旱区蒸发潜力在1993 年出现了一个明显的转折变化,由显著下降逆转为显著上升的趋势.气候变暖、蒸发水平增大对西北干旱区生态效应的负作用已经凸显;(4) 西北干旱区冰川变化对水资源量及年内分配产生了重要影响,部分河流已经出现冰川消融拐点.在塔里木河流域,冰川融水份额较大(50%),可能在未来一段时期,河川径流还将处在高位状态波动.全球气候变暖在加大极端气候水文事件发生频率和强度的同时,加剧了西北干旱区内陆河流域的水文波动和水资源的不确定性.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚宁
方功焕
王怀军
李稚
范煜婷
关键词 气候变化西北干旱区水资源    
Abstract:The arid region of Northwest China is a special natural unit, which responds sensitively to the global climate change. Studies on the impact of climate change on water resources in the arid region of Northwest China have a significant effect on the adaptability of future climate change. Based on the latest research results, this paper analyzes the impacts of climate change on the formation and transformation of water resources and water cycle in the arid region of Northwest China. The results can be shown as follows: (1) The air temperature and precipitation in the arid region of Northwest China had a significant increasing trend in the past 50 years, however, the sharp increasing trend has retarded since the 21st century. (2) The temperature change in winter could be the most important factor for the unusually sharp rise in annual air temperature in this region. Moreover, the Siberian High and carbon dioxide emissions could be the most important reasons for the higher rate of the winter temperature rise. (3) Pan evaporation in the region exhibited an obvious decreasing trend until the early 1990s (1993), however, the downward trend reversed to go upward since 1993. The negative effects of warming and increasing evaporation on ecology have been highlighted in the arid region of Northwest China. (4) The glacier change has exerted great impact on water resources and its annual distribution in the arid region of Northwest China, and many rivers have passed the "Glacier inflexion". In the Tarim River Basin, the proportion of glacier melt water to runoff is high (e.g., as much as 50%) and it is supposed that the runoff may show a great fluctuation in the near future. Global warming not only increases the frequency and intensity of hydrological extremes, but also intensifies the fluctuation and uncertainty of inland rivers.
Key wordswater resources    climate change    arid region of Northwest China
收稿日期: 2014-06-11      出版日期: 2014-11-19
基金资助:国家重点基础研究发展计划(973计划)项目(2010CB951003)
作者简介: 陈亚宁(1958-), 男, 研究员, 主要从事干旱区水资源与地表过程研究.E-mail: chenyn@ms.xjb.ac.cn
引用本文:   
陈亚宁, 李稚, 范煜婷, 王怀军, 方功焕. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
CHEN Yaning, LI Zhi, FAN Yuting, WANG Huaijun, FANG Gonghuan. Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geographica Sinica, 2014, 69(9): 1295-1304.
链接本文:  
http://www.geog.com.cn/CN/10.11821/dlxb201409005      或      http://www.geog.com.cn/CN/Y2014/V69/I9/1295
[1] IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis: Summary for Policymakers.
[2] Ji F, Wu Z H, Huang J P et al. Evolution of land surface air temperature trend. Nature Climate Change, 2014. doi: 10.1038/NCLIMATE2223.
[3] Chen Yaning, Yang Qing, Luo Yi et al. Ponder on the issue of water resources in the arid region of Northwest China. Arid Land Geography, 2012, 35(1): 1-9. [陈亚宁, 杨青, 罗毅等. 西北干旱区水资源问题研究思考. 干旱区地理, 2012, 35(1): 1-9.]
[4] Aðalgeirsdóttir G, Guðmundsson G H, Jörnsson H B. Volume sensitivity of Vatnajökull Ice Cap, Iceland, to perturbations in equilibrium line altitude. Journal of Geophysical Research, 2005, 110: F04001.
[5] Richard S. Chinese probe unmasks high-tech adulteration with melamine. Science, 2008, 320(4): 34.
[6] Crowley T J. Causes of climate change over the past 1000 years. Science, 2000, 289(5477): 270-277.
[7] Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snowdominated regions. Nature, 2005, 438(7066): 303-309.
[8] Sanchez E, Dominguez M, Romera R et al. Regional modeling of dry spells over the Iberian Peninsula for present climate and climate change conditions. Climatic Change, 2011, 107(3/4): 625-634.
[9] Li B F, Chen Y N, Shi X. Why does the temperature rise faster in the arid region of northwest China? Journal of Geophysical Research, 2012, 117: D16115.
[10] Li B F, Chen Y N, Li W H et al. Spatial and temporal characteristics of temperature and precipitation in the arid region of China from 1960-2010. Fresenius Environmental Bulletin, 2013, 22(2): 362-371.
[11] Wang H J, Chen Y N, Shi X et al. Changes in daily climate extremes in the arid area of northwestern China. Theoretical and Applied Climatology, 2013, 112(1/2): 15-28.
[12] Chen Y N, Deng H J, Li B F et al. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 2014, 336: 35-43.
[13] Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warmdry to warm-humid in Northwest China. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. [施雅风, 沈永 平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨. 冰川冻土, 2002, 24(3): 219-226.]
[14] Shi Yafeng, Shen Yongping, Li Dongliang et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China. Quaternary Sciences, 2003, 23(2): 152-164. [施雅风, 沈永平, 李栋梁等. 中国西北气候由暖干向 暖湿转型的特征和趋势探讨. 第四纪研究, 2003, 23(2): 152-164.]
[15] Chen F, Yuan Y, Wen W, et al. Tree-ring-based reconstruction of precipitation in the Changling Mountains, China, since AD 1691. International Journal of Biometeorology, 2012, 56(4): 765-774.
[16] Yang Y H, Chen Y N, Li W H et al. Climatic change of inland river basin in arid area: A case study in northern Xinjiang, China. Theoretical and Applied Climatology, 2012, 107(1/2): 143-154.
[17] Li B F, Chen Y N, Shi X et al. Temperature and precipitation changes in different environment in the arid region of northwest China. Theoretical and Applied Climatology, 2013, 112(3/4): 589-596.
[18] Hansen J, Rudy R, Glaseoe J et al. G1SS analysis of surface temperature change. Journal of Geophysical Research, 1999, 104(D24): 30997-31022.
[19] Wang Shaowu. Advances in Climate Research. Beijing: China Meteorological Press, 2001. [王绍武. 现代气候学研究 进展. 北京: 气象出版社, 2001.]
[20] Li Qingxiang, Dong Wenjie, Li Wei et al. Assessment of the uncertainties in temperature change in China during the last century. Chinese Science Bulletin, 2010, 55(16): 1544-1554. [李庆祥, 董文杰, 李伟等. 近百年中国气温变化中的 不确定性估计. 科学通报, 2010, 55(16): 1544-1554.]
[21] Ren Guoyu, Chu Ziying, Zhou Yaqing et al. Recent progresses in studies of regional temperature changes in China. Climatic and Environmental Research, 2005, 10(4): 701-716. [任国玉, 初子莹, 周雅清等. 中国气温变化研究最新进 展. 气候与环境研究, 2005, 10(4): 701-716.]
[22] Chen Yaning, Xu Zongxue. The possibble impact of global climate change on water resources in the Tarim River Basin. Science in China: Series D, 2004, 34(11): 1047-1053. [陈亚宁, 徐宗学. 全球气候变化对新疆塔里木河流域水 资源的可能性影. 中国科学: D辑, 2004, 34(11): 1047-1053.]
[23] Mishra A K, Singh V P. A review of drought concepts. Journal of Hydrology, 2010, 391: 204-216.
[24] Sheffield J, Andreadis K M, Wood E F et al. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. Journal of Climate, 2009, 22(8): 1962-1981.
[25] Yang Y H, Chen Y N, Li W H et al. Impacts of climatic change on river runoff in northern Xinjiang of China over last fifty years. Chinese Geography Sciences, 2010, 20(3): 193-201.
[26] Chen Z S, Chen Y N, Li W H. Response of runoff to change of atmospheric 0A degrees C level height in summer in arid region of Northwest China. Science China-Earth Sciences, 2012, 55(9): 1533-1544.
[27] Peterson T, Golubev V, Groisman P. Evaporation losing its strength. Nature, 1995, 393(6551): 687-688.
[28] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 396(6706): 29-30.
[29] Roderick M L, Farquhar G D. The cause of decreased pan evaporation over the past 50 years. Science, 2002, 298 (5597): 1410-1411.
[30] Gong L B, Xu C Y, Chen D L et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) Basin. Journal of Hydrology, 2006, 329: 620-629.
[31] Burn D H, Hesch N M. Trends in evaporation for the Canadian Prairies. Journal of Hydrology, 2007, 336(1/2): 61-73.
[32] Roderick M L, Rotstayn L D, Farquhar G D et al. On the attribution of changing pan evaporation. Geophysical Research Letters, 2007, 34: L17403.
[33] Szilagyi J. On Bouchet's complementary hypothesis. Journal of Hydrology, 2001, 246: 155-158.
[34] Szilagyi J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophysical Research Letters, 2007, 34: L02405.
[35] Penman H L. Natural evaporation from open water, bare and grass. Proceedings of the Royal Society of London, 1948, 193(1032): 120-145.
[36] Bouchet R J. Evapotranspiration reele et potentielle, signification climatique. General Assembly of Berkeley, Red Book, 1963, 62: 134-142, IAHS, Gentbrugge, Belgium.
[37] Li Z, Chen Y N, Shen Y J et al. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resources Research, 2013, 49(4): 2205-2212.
[38] Liu X M, Luo Y Z, Zhang D et al. Recent changes in pan-evaporation dynamics in China. Geophysical Research Letters, 2011, 38: L13404.
[39] Zhao X, Tan K, Zhao S et al. Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments, 2011, 75(10): 946-952.
[40] Wang Y F, Shen Y J, Chen Y N, et al. Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology, 2013, 6(6): 927-936.
[41] Li Qihu, Chen Yaning. Response of spatial and temporal distribution of NDVI to hydrothermal condition variation in arid regions of Northwest China during 1981-2006. Journal of Glaciology and Geocryology, 2014, 36(2): 327-334. [李 奇虎, 陈亚宁. 1981-2006 年西北干旱区NDVI时空分布变化对水热条件的响应. 冰川冻土, 2014, 36(2): 327-334.]
[42] Chen Yaning, Du Qiang, Chen Yuebin et al. Sustainable Water Resources Utilization in Bosten Lake Basin. Beijing: Science Press, 2013: 45-74. [陈亚宁, 杜强, 陈跃滨等. 博斯腾湖流域水资源可持续利用研究. 北京: 科学出版社, 2013: 45-74.]
[43] Gao Xin, Ye Bosheng, Zhang Shiqiang et al. Glacier runoff variation and its influence on river runoff during 1961-2006 in the Tarim River Basin, China. Science in China: Earth Sciences, 2010, 40(5): 654-665. [高鑫, 叶柏生, 张世 强. 1961-2006 年塔里木河流域冰川融水变化及其对径流的影响. 中国科学: 地球科学, 2010, 40(5): 654-665.]
[44] Liu Shiyin, Ding Yongjian, Li Jing et al. Glaciers in response to recent climate warming in western China. Quaternary Sciences, 2006, 26(5): 762-771. [刘时银, 丁永建, 李晶等. 中国西部冰川对近期气候变暖的响应. 第四纪研究, 2006, 26(5): 762-771.]
[45] Li Zhongqin, Li Kaiming, Wang Lin. Study on recent glacier changes and their impact on water resources in Xinjiang, northwestern China. Quaternary Sciences, 2010, 30(1): 96-106. [李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资 源的影响研究. 第四纪研究, 2010, 30(1): 96-106.]
[46] Chen Hui, Li Zhongqin, Wang Puyu et al. Change of glaciers in the central Qilian Mountain. Arid Zone Research, 2013, 30(4): 588-593. [陈辉, 李忠勤, 王璞玉等. 近年来祁连山中段冰川变化. 干旱区研究, 2013, 30(4): 588-593.]
[47] Huai Baojuan, Li Zhongqin, Sun Meiping et al. RS analysis of glaciers change in the Heihe River Basin in the last 50 years. Acta Geographica Sinica, 2014, 69(3): 365-377. [怀保娟, 李忠勤, 孙美平, 等. 近50 年黑河流域的冰川变化遥 感分析. 地理学报, 2014, 69(3): 365-377.]
[48] Wang Youkui, Jia Wenxiong, Liu Chaohai et al. Ecological environment change in north slope of the Qilianshan Mountains. Scientia Silvae Sinicae, 2012, 48(4): 21-26. [汪有奎, 贾文雄, 刘潮海等. 祁连山北坡的生态环境变化. 林 业科学, 2012, 48(4): 21-26.]
[49] Shen Yongping, Wang Gioya, Ding Yongjian. Changes in glacier mass balance in watershed of Sary Jaz-Kumarik rivers of Tianshan Mountains in 1957-2006 and their impact on water resources and trend to end of the 21st century. Journal of Glaciology and Geocryology, 2009, 31(5): 792-800. [沈永平, 王国亚, 丁永建. 1957-2006 年天山萨雷扎兹 库玛拉克河流域冰川物质平衡变化及其对河流水资源的影响. 冰川冻土, 2009, 31(5): 792-800.]
[50] Fan Y T, Chen Y N, Li X G et al. Characteristics of water isotopes and ice-snowmelt quantification in the Tizinafu River, North Kunlun Mountains, Central Asia. Quaternary International, doi: 10.1016/j.quaint.2014.05.020.
[51] Fan Y T, Chen Y N, Liu Y B. Variation of baseflows in the headstreams of the Tarim River Basin during 1960-2007. Journal of Hydrology, 2013, 487: 98-108.
[52] Wittenberg H, Sivapalan M. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 1999, 219(1): 20-33.
[53] Luo Y, Arnold J, Allen P et al. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences, 2012, 16(4): 1259-1267.
[54] Luo Y, Arnold J, Liu S. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. Journal of Hydrology, 2013, 477: 72-85.
[55] Morris M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161-174.
[56] Ratto M, Pagano A, Young P. State dependent parameter metamodelling and sensitivity analysis. Computer Physics Communications, 2007, 177(11): 863-876.
[57] Yang J, Liu Y, Yang W et al. Multi-objective sensitivity analysis of a fully distributed hydrologic model WetSpa. Water Resources Management, 2012, 26(1): 109-128.
[1] 葛全胜,郑景云,郝志新. 过去2000年亚洲气候变化(PAGES-Asia2k)集成研究进展及展望[J]. 地理学报, 2015, 70(3): 355-363.
[2] 庞奖励,黄春长,周亚利,查小春,张玉柱,王蕾彬. 郧县盆地风成黄土—古土壤与汉江I级阶地形成年龄研究[J]. 地理学报, 2015, 70(1): 63-72.
[3] 葛全胜, 郑景云, 郝志新, 张学珍, 方修琦, 王欢, 闫军辉. 过去2000年中国气候变化研究的新进展[J]. 地理学报, 2014, 69(9): 1248-1258.
[4] 王文涛, 刘燕华, 于宏源. 全球气候变化与能源安全的地缘政治[J]. 地理学报, 2014, 69(9): 1259-1267.
[5] 董旭光, 顾伟宗, 孟祥新, 刘焕彬. 山东省近50年来降水事件变化特征[J]. 地理学报, 2014, 69(5): 661-671.
[6] 鲍超. 中国城镇化与经济增长及用水变化的时空耦合关系[J]. 地理学报, 2014, 69(12): 1799-1809.
[7] 周葆华, 尹剑, 金宝石, 朱磊. 30年来武昌湖湿地退化过程与原因[J]. 地理学报, 2014, 69(11): 1697-1706.
[8] 戴尔阜, 翟瑞雪, 葛全胜, 吴秀芹. 1980s-2010s内蒙古草地表层土壤有机碳储量及其变化[J]. 地理学报, 2014, 69(11): 1651-1660.
[9] 赵良仕, 孙才志, 郑德凤. 中国省际水资源利用效率与空间溢出效应测度[J]. 地理学报, 2014, 69(1): 121-133.
[10] 熊鹰, 李静芝, 蒋丁玲. 基于仿真模拟的长株潭城市群水资源供需系统决策优化[J]. 地理学报, 2013, 68(9): 1225-1239.
[11] 潘威, 郑景云, 萧凌波, 闫芳芳. 1766 年以来黄河中游与永定河汛期径流量的变化[J]. 地理学报, 2013, 68(7): 975-982.
[12] 赵东升, 吴绍洪. 气候变化情景下中国自然生态系统脆弱性研究[J]. 地理学报, 2013, 68(5): 602-610.
[13] 刘敬强, 瓦哈甫·哈力克, 哈斯穆·阿比孜, 党建华, 邓宝山, 张玉萍. 新疆特色林果业种植对气候变化的响应[J]. 地理学报, 2013, 68(5): 708-720.
[14] 戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化[J]. 地理学报, 2013, 68(5): 593-601.
[15] 王学, 李秀彬, 辛良杰. 河北平原冬小麦播种面积收缩及由此节省的水资源量估算[J]. 地理学报, 2013, 68(5): 694-707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2013 《地理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发