地理学报 ›› 2014, Vol. 69 ›› Issue (4): 485-496.doi: 10.11821/dlxb201404005
叶玉瑶1, 苏泳娴1, 张虹鸥1, 吴旗韬1, 刘凯2
收稿日期:
2013-07-18
修回日期:
2013-12-30
出版日期:
2014-04-20
发布日期:
2014-04-20
作者简介:
叶玉瑶(1980-),女,四川乐山人,博士,副研究员,中国地理学会会员(S110008400M),研究方向为区域发展与城市规划。E-mail:yeyuyao@gdas.ac.cn
基金资助:
YE Yuyao1, SU Yongxian1, ZHANG Hong'ou1, WU Qitao1, LIU Kai2
Received:
2013-07-18
Revised:
2013-12-30
Published:
2014-04-20
Online:
2014-04-20
Supported by:
摘要: 本文将城市扩展视为城市用地克服生态阻力向外扩散的过程,基于最小累积阻力模型(MCR) 进行方法创新,在模型中引入不同等级源的相对阻力因子,并考虑生态障碍对于城市扩展的刚性约束,构建适合于城市扩展模拟的生态阻力面模型(UEER)。在此基础上,利用广州市土地利用第二次调查数据、遥感影像数据、DEM数据以及其他生态要素相关数据,通过源的确定与分级、基面阻力综合评价、UEER模型运算等步骤,构建了广州市城市扩展的生态阻力面,并用于模拟城市用地扩展至不同规模情景时的空间分布及边界。结果表明:① 通过UEER模型生成的生态阻力面能够综合反映城市扩展水平过程所需克服的生态阻力,因此能够反映生态约束下城市扩展的空间运动趋势,可以用于城市扩展模拟。② 与基于MCR模型的模拟结果相比,基于UEER模型的模拟结果更加符合实际并体现生态保护的要求。从城市扩展的规模与强度控制看,模拟结果更加符合实际需求,并体现政策调控方向。从城市形态以及与生态要素的关系看,一些重要的生态要素在快速城市化进程中能够得以保留,同时生态障碍作为生态隔离,能够有效地防止城市的蔓延式扩展,从而使城市扩展表现出明显的组团式特征。
叶玉瑶, 苏泳娴, 张虹鸥, 吴旗韬, 刘凯. 生态阻力面模型构建及其在城市扩展模拟中的应用[J]. 地理学报, 2014, 69(4): 485-496.
YE Yuyao, SU Yongxian, ZHANG Hong'ou, WU Qitao, LIU Kai. Ecological resistance surface model and its application in urban expansion simulations[J]. Acta Geographica Sinica, 2014, 69(4): 485-496.
[1] Haregeweyn N, Fikadu G, Tsunekawa A et al. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landscape and Urban Planning, 2012, 106(2): 149-157. [2] He C, Okada N, Zhang Q et al. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 2008, 86: 79-91. [3] Berling-Wolff S, Wu J. Modeling urban landscape dynamics: A case study in Phoenix, USA. Urban Ecosystems, 2004, 7 (3): 215-240. [4] Grimm N B, Grove J M, Pickett S T A et al. Integrated approaches to long-term studies of urban ecological systems. BioScience, 2000, 50(7): 571-584. [5] Lambin E, Geist J. Global land use and land cover change: What have we learned so far? Global Change News Letter, 2001, 46: 27-30. [6] Mundia C N, Murayama Y. Modeling spatial processes of urban growth in African cities: A case study of Nairobi City. Urban Geography, 2010, 31(2): 259-272. [7] Nagendra H, Munroe D K, Southworth J. From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agriculture, Ecosystems and Environment, 2004, 101: 111-115. [8] Pickett S T A, Cadenasso M L, Grove J M et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 2001, 32: 127-157. [9] Weber C, Puissant A. Urbanization pressure and modeling of urban growth: Example of the Tunis Metropolitan Area. Remote Sensing of Environment, 2003, 86: 341-352. [10] Costanza R, Ruth M. Using dynamic modeling to scope environmental problems and build consensus. Environmental Management, 1998, 22: 183-195. [11] Verburg P H, Schot P, Dijst M et al. Land use change modelling: Current practice and research priorities. GeoJournal, 2004, 61(4): 309-324. [12] Li X, Yeh A G O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 2000, 14: 131-152. [13] Barredo J I, Kasanko M, McCormick N et al. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 2003, 64: 145-160. [14] He C, Okada N, Zhang Q et al. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Applied Geography, 2006, 26: 323-345. [15] Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 2002, 16: 323-343. [16] Li Xia, YE H A G O. Constrained cellular automata for modelling sustainable urban forms. Acta Geographical Sinica, 1999, 54(4): 159-166. [黎夏, 叶嘉安. 约束性单元自动演化以模型及可持续城市发展形态的模拟. 地理学报, 1999, 54(4): 159-166.] [17] Stevens D, Dragicevic S, Rothley K. iCity: A GIS-CA modelling tool for urban planning and decision making. Environmental Modelling & Software, 2007, 22: 761-773. [18] Zhou Chenghu, Sun Zhanli, Xie Yichun. Geo-cellular Automata. Beijing: Science Press, 1999. [周成虎, 孙战利, 谢一 春. 地理元胞自动机研究. 北京: 科学出版社, 1999.] [19] Wang Liangjian, Shi Yingchun, Lin Muxuan. Applications of BP neural network theory on urban expansion forecasts with wavelet treatment: A case of Changsha urban area. China Land Science, 2008, (1): 39-47. [王良健, 师迎春, 林目 轩. BP神经网络结合小波处理在城市扩张预测中的应用: 以长沙市区为例. 中国土地科学, 2008, (1): 39-47.] [20] Weddell P. Urbansim: Modeling urban development for land use, transportation, and environment planning. Journal of American Planning Association, 2002, 68(3): 297-313. [21] Li L, Sato Y, Zhu H. Simulating spatial urban expansion based on a physical process. Landscape and Urban Planning, 2003, 64: 67-76. [22] Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 1992, 23:10-16. [23] Yu Kongjian. Ecologically strategic points in landscape and surface model. Acta Geographica Sinica, 1998, 53(Suppl.): 12-20. [俞孔坚. 景观生态战略点识别方法与理论地理学的表面模型. 地理学报, 1998, 53(增刊): 12-20.] [24] Yu K. Security patterns and surface model in landscape ecological planning. Landscape and Urban Planning, 1996, 36: l-17. [25] Pain G, Baudry J, Burel F. Land Pop: un outil d'étude de la structure spatiale des populations animals fragmentées. Revue Internationale de Géomatique, 2000, 10: 89-106. [26]Chardon J P, Adriaensen F, Matthysen E. Incorporing landscape elements into a connectivity measure: A case study of Speckled wood butterfly. Landscape Ecology, 2003, 18: 561-573. [27] Adriaensen F, Chardon J P, De Blust G et al. The application of 'least-cost' modelling as a functional landscape model. Landscape and Urban Planning, 2003, 64: 233-247. [28] Ray N, Burgman M A. Subjective uncertainties in habitat suitability maps. Ecological Modelling, 2006, 195: 172-186. [29] Ray N, Lehmann A, Joly P. Modeling spatial distribution of amphibian populations: A GIS approach based on habitat matrix permeability. Biodivers. Conserv, 2002, 11: 2143-2165. [30] Zhang Xuqiang, Li Hua, Dong Xuewang. Study on the Theory of Tourist Resistance Side. Scientia Geographica Sinica, 2003, 23(2): 240-244. [张序强, 李华, 董雪旺. 旅游地阻力面理论初探: 五大连池风景名胜区为例. 地理科学, 2003, 23(2): 240-244.] [31] Chen Yanfei, Du Pengfei. An analysis of urban expansion based on the minimal cumulative resistance model// Harmonious Urban Planning: China Urban Planning Annual Conference Proceedings, 2007. Harbin: Heilongjiang Science and Technology Press, 2007: 1875-1879. [陈燕飞, 杜鹏飞. 基于最小累积阻力模型的城市用地扩展分析//和 谐城市规划: 2007 中国城市规划年会论文集. 哈尔滨: 黑龙江科学技术出版社, 2007: 1875-1879.] [32] Peng Jinfu. Application of the minimum cumulative resistance model on land use change: A case study of Yangzhong City, Jiangsu Province [D]. Beijing: Peking University, 2000. [彭晋福. 应用最小累计阻力模型模拟土地利用变化: 以 江苏省扬中市为例[D]. 北京: 北京大学, 2000.] [33] Liu Xiaofu, Shu Jianmin, Zhang Linbo. Research on applying minimal cumulative resistance model in urban land ecological suitability assessment: As an example of Xiamen City. Acta Ecologica Sinica, 2010, 30(2): 421-428. [刘孝 富, 舒俭民, 张林波. 最小累积阻力模型在城市土地生态适宜性评价中的应用: 以厦门为例. 生态学报, 2010, 30(2): 421-428.] [34] Yu Kongjian, You Hong, Xu Liyan et al. A minimum cumulative resistance (MCR) analysis approach. Geographical Research, 2012, 31(7): 1173-1184. [俞孔坚, 游鸿, 许立言等. 北京市住宅用地开发压力与城市扩张预景: 基于阻力 面的分析. 地理研究, 2012, 31(7): 1173-1184.] [35] Sha Ou. UGB's delimit of mountainous city: West Hunan examp. Planners, 2011, 27(Suppl.): 23-28. [沙鸥. 山地城市 增长边界划定研究: 以湘西自治州花垣县城为例. 规划师, 2011, 27(增刊): 23-28.] [36] Su Yongxian, Zhang Hong'ou, Chen Xiuzhi et al. The ecological security patterns and construction land expansion simulation in Gaoming. Acta Ecologica Sinica, 2013, 33(5): 1524-1534. [苏泳娴, 张虹鸥, 陈修治等. 佛山市高明区生 态安全格局和建设用地扩展预案. 生态学报, 2013, 33(5): 1524-1534.] |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[3] | 陈翔, 孙武, 沈子桐, 朱琳琳, 张佳滨, 许伟. 广州市主城区风道特征与通风效能评估[J]. 地理学报, 2021, 76(3): 694-712. |
[4] | 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725. |
[5] | 马海涛. 知识流动空间的城市关系建构与创新网络模拟[J]. 地理学报, 2020, 75(4): 708-721. |
[6] | 夏军, 张永勇, 穆兴民, 左其亭, 周宇建, 赵广举. 中国生态水文学发展趋势与重点方向[J]. 地理学报, 2020, 75(3): 445-457. |
[7] | 孙毅中, 杨静, 宋书颖, 朱杰, 戴俊杰. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179. |
[8] | 张杰, 史培军, 杨静, 龚道溢. 北京地区景观城市化进程对暴雨过程的影响——以“7·21”暴雨为例[J]. 地理学报, 2020, 75(1): 113-125. |
[9] | 安宁,冯秋怡,朱竑. 基于报业话语的广州非裔社区的空间想象分析[J]. 地理学报, 2019, 74(8): 1650-1662. |
[10] | 张行,梁小英,刘迪,史琴琴,陈海. 生态脆弱区社会—生态景观恢复力时空演变及情景模拟[J]. 地理学报, 2019, 74(7): 1450-1466. |
[11] | 崔学刚,方创琳,刘海猛,刘晓菲,李咏红. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(6): 1079-1096. |
[12] | 林荣平, 周素红, 闫小培. 1978年以来广州市居民职住地选择行为时空特征与影响因素的代际差异[J]. 地理学报, 2019, 74(4): 753-769. |
[13] | 朱文博, 张静静, 崔耀平, 郑辉, 朱连奇. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459. |
[14] | 卓莉, 张子彦, 雷小雨, 李秋萍, 陶海燕. 基于蒙特卡洛生存分析探究东北森林物候的影响因素[J]. 地理学报, 2019, 74(3): 490-503. |
[15] | 杨莹,林琳,钟志平,欧莹莹,徐茜,蒙美昀,郝珊. 基于应对公共健康危害的广州社区恢复力评价及空间分异[J]. 地理学报, 2019, 74(2): 266-284. |