地理学报 ›› 2014, Vol. 69 ›› Issue (3): 399-408.doi: 10.11821/dlxb201403011
王随继1, 李玲1,2
收稿日期:
2013-07-15
修回日期:
2013-12-20
出版日期:
2014-03-20
发布日期:
2014-03-20
作者简介:
王随继(1966- ),男,甘肃静宁人,博士,副研究员,中国地理学会会员(S110001472M),主要研究方向为河流沉积学、地貌学及流域地表过程。E-mail:wangsj@igsnrr.ac.cn
基金资助:
WANG Suiji1, LI Ling1,2
Received:
2013-07-15
Revised:
2013-12-20
Published:
2014-03-20
Online:
2014-03-20
Supported by:
摘要: 研究选取黄河银川平原全长196 km的河段,以1975 年、1990 年、2010 年和2011 年四个年份的卫星影像数据绘制的左右河岸线,与设立的平均间隔为1.3 km的153 个河道固定横断面的交点位置的变化,估算了1975-1990 年、1990-2010 年和2010-2011 年三个时期的河岸平均摆动速率。结果表明,该河段左岸以向右摆动为主,在上述时期左岸总的平均摆动速率分别为36.5 m/a、27.8 m/a 和61.5 m/a;右岸在1975-1990 年以向右摆动为主,此后则以向左摆动为主,其摆动速率分别为31.7 m/a、23.1 m/a 和50.8 m/a。在1975-2011 全部36 年间,左右河岸的年均摆动速率分别为22.3 m/a 和14.8 m/a。河岸摆动速率在A、B、C三个河段相差悬殊,在1975-2011 的36 年间,左岸向左和向右的平均摆动速率之比分别为1:7.6:4.6 和1:1.7:3.8;右岸向左和向右的平均摆动速率之比为1:1.8:1.2 和1:5.6:17.7。显然,无论左岸右岸,它们在A段的摆动速率最小,向左摆动速率最大的出现在B段,而向右摆动速率最大的则是C段。河岸摆动速率在时序上的增大现象主要受制于人类筑坝蓄水等引起汛期流量的逐渐减小,而空间变化主要受制于河岸物质组成的区域差异。
王随继, 李玲. 黄河银川平原段河岸摆动速率变化及原因[J]. 地理学报, 2014, 69(3): 399-408.
WANG Suiji, LI Ling. Lateral shift rate variation of the river banks in the Yinchuan Plain reach of the Yellow River and its causes[J]. Acta Geographica Sinica, 2014, 69(3): 399-408.
[1] Zhao Wenlin. The Water Conservancy Technology Series of the Yellow River: Sediment of the Yellow River. Zhengzhou: Yellow River Water Conservancy Press, 1996. [赵文林. 黄河水利科学技术丛书: 黄河泥沙. 郑州: 黄河水利出版社, 1996.] [2] Yang Gensheng, Ta Wanquan, Dai Fengnian et al. Contribution of sand sources to the silting of riverbed in Inner Mongolia section of Huanghe River. Journal of Desert Research, 2003, 23(2): 152-159. [杨根生, 拓万全, 戴丰年等. 风沙对黄河内蒙古河段河道泥沙淤积的影响. 中国沙漠, 2003, 23(2): 152-159.] [3] Shen Guanqing, Zhang Yuanfeng, Hou Suzhen et al. Impact of water and sediment regulation by reservoirs in the upper Yellow River on Inner-Mongolia reaches. Journal of Sediment Research, 2007, (1): 67-75. [申冠卿, 张原锋, 侯素珍等. 黄河上游干流水库调节水沙对宁蒙河道的影响. 泥沙研究, 2007, (1): 67-75.] [4] Zhang Xiaohua, Pei Mingsheng, Pan Xiandi et al. Adjustment of alluvial reach in the Yellow River. Journal of Sediment Research, 2002, (3): 1-8. [张晓华, 裴明胜, 潘贤娣等. 黄河冲积性河道的调整. 泥沙研究, 2002, (3): 1-8.] [5] Yao Z Y, Ta W Q, Jia X P et al. Bank erosion and accretion along the Ningxia-Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology, 2011, 127: 99-106. [6] Sun Dongpo. Analysis on energy distribution-dissipation relation on river system. Journal of Hydraulic Engineering, 1999, (3): 49-53. [孙东坡. 河流系统能量分配耗散关系分析. 水利学报, 1999, (3): 49-53.] [7] Sun Dongpo, Yang Zhenzhen, Zhang Li et al. Analysis of riverbed form adjustment based on energy dissipation in the Inner Mongolia reach of Yellow River. Advances in Water Science, 2011, 22(5): 653-661. [孙东坡, 杨真真, 张立等. 基于能量耗散关系的黄河内蒙段河床形态调整分析. 水科学进展, 2011, 22(5): 653-661.] [8] Yang Leifei. Analysis of the thaw flood discharge in the Ningxia-Neimenggu reach of the Yellow River. Journal of Sediment Research, 1992, (6): 62-68. [杨赉斐. 黄河宁蒙河段凌汛洪水流量分析研究. 泥沙研究, 1992, (6): 62-68.] [9] Wang Suiji. Analysis of river pattern transformations in the Yellow River Basin. Progress in Geography, 2008, 27(2): 10-17. [王随继. 黄河流域河型转化现象初探. 地理科学进展, 2008, 27(2): 10-17.] [10] Ran L S, Wang S J, Lu X X. Hydraulic geometry change of a large river: A case study of the upper Yellow River. Environmental Earth Sciences, 2012, 66: 1247-1257. [11] Wang S J, Yan Y X, Li Y K. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007. Catena, 2012, 92: 30-37. [12] Wang Suiji, Fan Xiaoli. Flood processes and channel responses in typical years of the different channel patterns in Neimenggu reaches of the upper Yellow River. Progress in Geography, 2010, 29(4): 501-506. [王随继, 范小黎. 黄河内蒙古不同河型段对洪水过程的响应特征. 地理科学进展, 2010, 29(4): 501-506.] [13] Fan Xiaoli, Shi Changxing, Zhou Yuanyuan et al. Characteristics of flood regime in Ningxia-Inner Mongolia reaches of the upper Yellow River. Resources Science, 2012, 34(1): 65-73. [范小黎, 师长兴, 周园园等. 黄河宁蒙段洪水过程变化特点. 资源科学, 2012, 34(1): 65-73.] [14] Fan Xiaoli, Wang Suiji, Ran Lishan. Analysis of the channel evolution and influence factors in Ningxia reach of the Yellow River. Journal of Water Resources & Water Engineering, 2010, 21(1): 5-11. [范小黎, 王随继, 冉立山. 黄河宁夏河段河道演变及其影响因素分析. 水资源与水工程学报, 2010, 21(1): 5-11.] [15] Hou Suzhen, Chang Wenhua, Wang Ping et al. The characteristics of the channel shrinkage and reasons in the Neimenggu reach of the Yellow River. Yellow River, 2007, 29(1): 24-26. [侯素珍, 常温花, 王平等. 黄河内蒙古段河道萎缩特征及成因. 人民黄河, 2007, 29(1): 24-26.] [16] Ran Lishan, Wang Suiji, Fan Xiaoli. River channel change at Toudaoguai Section and its response to water and sediment supply of the upper Yellow River. Acta Geographica Sinica, 2009, 64(5): 531-540. [冉立山, 王随继, 范小黎等. 黄河内蒙古头道拐断面形态变化及其对水沙的响应. 地理学报, 2009, 64(5): 531-540.] [17] Petts G E. Changing river channels: The geographical tradition//Gurnell A, Petts G. Changing River Channels. New York: John Wiley & Sons, 1995: 1-23. [18] Wang Suiji. Variations of the channel sedimentation rate in the Yinchuan Plain reach of the Yellow River. Acta Sedimentologica Sinica, 2012, 30(3): 565-571. [王随继. 黄河银川平原段河床沉积速率变化特征. 沉积学报, 2012, 30 (3): 565-571.] [19] Khan N I, Islam A. Quantification of erosion patterns in the Brahmaputra-Jamuna River using geographical information system and remote sensing techniques. Hydrol. Process., 2003, 17: 959-966. [20] Yang Shuwen, Li Mingyong, Liu Tao et al. A method of alluvial fan automatic extraction from TM image. Remote Sensing for Land & Resources, 2011, (2): 65-69. [杨树文, 李名勇, 刘涛等. 一种利用TM 图像自动提取洪积扇的方法. 国土资源遥感, 2011, (2): 65-69.] [21] U.S. Geological Survey. http://earthexplorer.usgs.gov/. 2012. [美国地质勘查局. http://earthexplorer.usgs. gov/. 2012.] [22] Gurnell A M. Channel change on the River Dee meanders, 1946.1992, from the analysis of air photographs. Regul Rivers Res. Manag., 1997, 12: 13-26. [23] Winterbottom S. Medium and short-term channel planform changes of the Rivers Tay and Tummel, Scotland. Geomorphology, 2000, 34: 195-208. [24] Richard G A, Julien P Y, Baird D C. Statistical analysis of lateral migration of the Rio Grande, New Mexico. Geomorphology, 2005, 71: 139-155. [25] Yao Z, Xiao J, Ta W et al. Planform channel dynamics along the Ningxia-Inner Mongolia reaches of the Yellow River from 1958 to 2008: Analysis using Landsat images and topographic maps. Environ. Earth Sci., 2013, 70: 97-106. [26] Hudson P F, Kesel R H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology, 2000, 28(6): 531-534. |
[1] | 高海东, 吴曌. 黄河头道拐—潼关区间植被恢复及其对水沙过程影响[J]. 地理学报, 2021, 76(5): 1206-1217. |
[2] | 黄春长. 若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J]. 地理学报, 2021, 76(3): 612-625. |
[3] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[4] | 柴元方, 邓金运, 杨云平, 孙昭华, 李义天, 朱玲玲. 长江中游荆江河段同流量—水位演化特征及驱动成因[J]. 地理学报, 2021, 76(1): 101-113. |
[5] | 程亦菲, 夏军强, 周美蓉, 王英珍. 黄河下游游荡段排沙比对水沙条件与断面形态的响应[J]. 地理学报, 2021, 76(1): 127-138. |
[6] | 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1): 139-152. |
[7] | 王彦君, 吴保生, 钟德钰. 黄河下游主槽断面形态对水沙变化响应过程的模拟[J]. 地理学报, 2020, 75(7): 1494-1511. |
[8] | 张俊华, 李国栋, 王岩松, 朱连奇, 赵文亮, 丁亚鹏. 黄河泥沙冲/沉积区土壤有机碳不同组分空间特征及变异机制[J]. 地理学报, 2020, 75(3): 558-570. |
[9] | 马腾, 葛岳静, 黄宇, 刘晓凤, 林荣平, 胡志丁. 基于流量数据的中美两国与东北亚地缘经济关系研究[J]. 地理学报, 2020, 75(10): 2076-2091. |
[10] | 赵长森,潘旭,杨胜天,刘昌明,陈新,张含明,潘天力. 低空遥感无人机影像反演河道流量[J]. 地理学报, 2019, 74(7): 1392-1408. |
[11] | 严鑫,孙昭华,谢翠松,夏军强. 基于经验模型的长江口南支上段压咸临界流量[J]. 地理学报, 2019, 74(5): 935-947. |
[12] | 陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436. |
[13] | 王彦君, 吴保生, 申冠卿. 1986-2015年小浪底水库运行前后黄河下游主槽调整规律[J]. 地理学报, 2019, 74(11): 2411-2427. |
[14] | 何磊,叶思源,袁红明,薛春汀. 黄河三角洲利津超级叶瓣时空范围的再认识[J]. 地理学报, 2019, 74(1): 146-161. |
[15] | 高超,王随继. 1990年以来黄河第一湾齐哈玛河段砾质网状河的演变特征[J]. 地理学报, 2018, 73(7): 1352-1364. |