地理学报 ›› 2013, Vol. 68 ›› Issue (9): 1182-1196.doi: 10.11821/dlxb201309003

• 地貌 • 上一篇    下一篇

河口海岸中长时间尺度动力地貌系统模拟研究与进展

郭磊城1,2, 何青1, Dano ROELVINK2,3, Zhengbing WANG1,3,4, Mick VAN DER WEGEN2,3   

  1. 1. 华东师范大学河口海岸学国家重点实验室, 上海 200062;
    2. UNESCO-IHE, PO Box 3015, 2601 DA Delft, the Netherlands;
    3. Deltares, PO Box 177, 2600 MH Delft, the Netherlands;
    4. Delft University of Technology, PO Box 5048, 2600 GA Delft, the Netherlands
  • 收稿日期:2013-05-06 修回日期:2013-06-11 出版日期:2013-09-05 发布日期:2013-11-05
  • 作者简介:郭磊城(1985- ), 男, 江西赣州人, 博士研究生, 从事河口海岸泥沙运动和动力地貌模拟研究。E-mail:leicheng120@126.com
  • 基金资助:
    国家自然科学基金(41276080); 创新研究群体科学基金(41021064); 上海市科委重大研究项目(11dz1204900; 12231203100; 水利部公益性行业科研专项, 201201070_03)

Medium-to long-term morphodynamic modelling in estuaries and coasts: Principles and applications

GUO Leicheng1,2, HE Qing1, Dano ROELVINK2,3, Zhengbing WANG1,3,4, Mick VAN DER WEGEN2,3   

  1. 1. State Key Lab of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
    2. UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands;
    3. Deltares, PO Box 177, 2600 MH Delft, The Netherlands;
    4. Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands
  • Received:2013-05-06 Revised:2013-06-11 Online:2013-09-05 Published:2013-11-05
  • Contact: 何青, 教授, 博导。E-mail: qinghe@sklec.ecnu.edu.cn E-mail:qinghe@sklec.ecnu.edu.cn
  • Supported by:
    Foundation National Natural Science Foundation of China, No.41276080; Creative Research Groups of China, No.41021064; Key Project of the Shanghai Science & Technology Committee, No.11dz1204900, 12231203100; Non-Profit Industry Financial Program of MWR, No.201201070_03

摘要: 我国河口海岸动力沉积和动力地貌研究以沉积学和地貌学的方法侧重静态描述,动力地貌相互作用的定量研究不多,与缺少动力地貌模型技术有关。本文介绍了中长时间尺度的河口海岸动力地貌模型技术及其发展和应用,讨论了决定动力地貌演变的泥沙余输运及引起泥沙余输运的主要动力因子,介绍了动力地貌模型的应用进展,进而分析了河口海岸地貌过程的机制和地貌平衡系统。本文指出对淤泥质及复杂动力条件下的河口海岸动力地貌过程还有待进一步研究。

关键词: 河口, 海岸, 泥沙余输运, 数学模型, 动力地貌

Abstract: The interplay between hydrodynamics, sediment transports and geometrical constraints govern the evolution of large scale estuarine and coastal morphological features. On a long time scale (> decades) sea level rise, and changing regimes in river discharge and sediment supply may influence morphological evolution as well. Spatial gradients in tide residual sediment transport cause the morphodynamic development. Relevant mechanisms are the Stokes' drift, tidal asymmetry, wave skewness, settling and scour lag, estuarine gravitational circulation, and residual transport driven by river discharge or wind. Morphodynamic models consider these physical processes and include a feedback between hydrodynamics and morphological development. Process-based morphodynamic models may deploy process and input reduction techniques to accelerate developments focusing on major processes. An example is the morphological acceleration factor to account for the different time scales of morphodynamic evolution and hydrodynamic processes. Process-based numerical models are able to reproduce realistic morphology, such as channel-shoal patterns and delta distributary channel formation. These models are also able to hindcast historical estuarine and coastal morphodynamic evolutions and to predict morphological response to sea level rise in future. So far, limited attention has been paid to muddy systems and river flow impact thus requiring further research effort.

Key words: estuary, residual sediment transport, morphodynamics, coast, numerical model