Ecosystem Services
CHEN Hongjin, LIU Lin, ZHANG Zhengyong, LIU Ya, TIAN Hao, KANG Ziwei, WANG Tongxia, ZHANG Xueying
Research on the spatiotemporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects, including fully understanding the causes and mechanisms of climate change, actively adapting to climate change, pursuing rational development, and protecting the ecological environment. The north slope of Tianshan Mountains, located in the arid area of northwestern China, is a typical area that is extremely sensitive to climate change. This paper takes the area as an example to retrieve the surface temperature of the mountain based on MODIS data, characterized by the effect of the intensity of human activities on the night light, population distribution and land use. The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed, and the spatiotemporal correlation between them was further explored. It is found that: (1) The average human activity intensity (0.11) has kept relatively low since the beginning of the 21st century, and it has been slowly rising in a stepwise manner (0.0024 a-1); in addition, the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years. (2) The annual average surface temperature in the area is 7.18 ℃ with an obvious growth. The rate of change (0.02 ℃·a-1) is about 2.33 times that of the world. The striking boost in spring (0.068 ℃·a-1) contributes the most to the overall warming trend. Spatially, the surface temperature is low in the south and high in the north, due to the prominent influence of the underlying surface characteristics, such as elevation and vegetation coverage. (3) The intensity of human activity and the surface temperature are remarkably positively correlated in the areas with intense human activity, showing a strong distribution pattern in the east section and a weak one in the west section. The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities, manifestations, and land-use changes. Vegetation-related human interventions, such as farming and forestry planting, urban greening, and afforestation, can effectively mitigate the surface warming caused by human activities. This study not only puts forward new ideas to finely portray the intensity of human activities, but also offers a scientific reference for regional human-land coordination and overall development.