Spatial pathways of clean energy technology transfers and emission reduction effects in the Guangdong-Hong Kong-Macao Greater Bay Area
Received date: 2024-02-22
Revised date: 2025-01-13
Online published: 2025-05-23
Supported by
National Natural Science Foundation of China(42130712)
National Natural Science Foundation of China(72348003)
National Natural Science Foundation of China(42201196)
Advancing the transfer and application of clean energy technologies is a pivotal strategy for addressing energy-related environmental and climate challenges. The Guangdong-Hong Kong-Macao Greater Bay Area (GBA), a major economic and innovation hub in China, possesses substantial potential in facilitating clean energy technology transfer and reducing carbon emissions. This study examines the spatial dynamics of local, interregional, and international clean energy technology transfers within the GBA, based on patent transfer data from 2010 to 2022. Furthermore, the study employs the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model to assess the impact of these transfers on the region's emission reduction targets. This study reveals the following findings: (1) The scale of local clean energy technology transfers within the GBA exhibits a fluctuating upward trend, predominantly following an "intra-city hub-and-spoke" model. The transfer network has evolved from a single-core to a dual-core and, eventually, to a multi-center configuration. (2) Interregional clean energy technology transfers are increasingly active, narrowing the gap with local transfers. The transfer model has shifted from concentration to diffusion, with external demand transitioning from the Yangtze River Delta to the Beijing-Tianjin-Hebei region. The spatial pattern of outward diffusion has expanded from innovation-intensive cities in the eastern and central regions to western cities such as Haixi, Urumqi, and Karamay. (3) The scale of international clean energy technology transfers remains relatively small, but its activity is gradually increasing, with the Hong Kong-Shenzhen core network engaging with a more diverse array of partners. (4) Clean energy technology transfer has had a significant inhibitory effect on carbon emissions in the GBA, particularly through local and interregional intercity transfers, while the emission reduction effect of international transfers is not yet significant. This study sheds light on the spatial pathways, characteristics, and emission reduction impacts of clean energy technology transfers in the GBA, providing valuable insights for formulating regional low-carbon policies and promoting technological innovation cooperation.
ZHOU Yannan , HE Ze , ZHANG Yaxin , YANG Sirui , YANG Yu . Spatial pathways of clean energy technology transfers and emission reduction effects in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geographica Sinica, 2025 , 80(5) : 1261 -1281 . DOI: 10.11821/dlxb202505007
[1] |
IEA. CO2 Emission in 2023. Paris: International Energy Agency, 2024.
|
[2] |
IEA. Tracking Energy Innovation: Focus on China. Paris: International Energy Agency, 2022.
|
[3] |
[贺克斌. “双碳”目标促进世界经济向新的模式发展. 新华网, 2021. https://www.news.cn/politics/2022-01/11/c_1128253817.htm
|
[4] |
|
[5] |
[毛熙彦, 贺灿飞. 经济全球化新叙事与中国经济地理学发展新趋势. 地理学报, 2023, 78(12): 2905-2921.]
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
[段德忠, 金红. 中国城市绿色技术扩散的时空过程与形成机制. 地理学报, 2023, 78(8): 2001-2018.]
|
[11] |
[栾贵勤, 杨怡, 张永坤, 等. 我国低碳技术扩散路径研究. 资源开发与市场, 2011, 27(11): 1043-1046.]
|
[12] |
[曹霞, 张路蓬. 企业绿色技术创新扩散的演化博弈分析. 中国人口·资源与环境, 2015, 25(7): 68-76.]
|
[13] |
[陈恒, 彭程, 郭爽, 等. 基于复杂市场网络绿色技术创新扩散的两阶段演化分析. 中国管理科学, 2024, 32(3): 135-144.]
|
[14] |
[戴靓, 丁子军, 马海涛, 等. 粤港澳大湾区技术转移的空间关联与内生动力. 地理学报, 2024, 79(6): 1503-1520.]
|
[15] |
|
[16] |
|
[17] |
[王为东, 卢娜, 张财经. 空间溢出效应视角下低碳技术创新对气候变化的响应. 中国人口·资源与环境, 2018, 28(8): 22-30.]
|
[18] |
[段德忠, 杨凡, 胡璇. 中国城市技术转移的空间溢出效应与经济增长. 科研管理, 2020, 41(6): 90-97.]
|
[19] |
[孙中瑞, 樊杰, 孙勇, 等. 中国绿色科技创新效率空间关联网络结构特征及影响因素. 经济地理, 2022, 42(3): 33-43.]
|
[20] |
|
[21] |
[程丹亚, 曾刚. 本地—跨界视角下长三角区域绿色技术创新网络结构特征研究. 人文地理, 2023, 38(5): 79-87.]
|
[22] |
[杜德斌, 金红, 段德忠. 绿色技术跨城流动下长三角生态绿色一体化发展研究. 中国科学院院刊, 2022, 37(12): 1770-1782.]
|
[23] |
|
[24] |
[金红, 段德忠. 长江经济带城际绿色技术流动的时空特征及减排效应研究. 地理科学进展, 2024, 43(1): 17-32.]
|
[25] |
[顾高翔, 王铮. 《巴黎协定》背景下国际低碳技术转移的碳减排研究. 中国软科学, 2018(12): 8-16.]
|
[26] |
[吴康, 耿一睿, 郭涛. 城市群绿色技术创新对碳排放的影响: 基于人力资本的调节效应. 自然资源学报, 2024, 39(9): 2121-2139 ]
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
[严翔, 黄永春, 胡世亮, 等. 绿色技术转移何以抑制碳排放: 基于长三角城市的经验证据. 管理评论, 2023, 35(8): 171-183.]
|
[34] |
|
[35] |
[孟望生, 张扬. 自然资源禀赋、技术进步方式与绿色经济增长: 基于中国省级面板数据的经验研究. 资源科学, 2020, 42(12): 2314-2327.]
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
[高爽, 王少剑, 莫惠斌. 全球视角下中国城镇化进程及其碳排放效应的比较研究. 地理科学, 2024, 44(2): 204-215.]
|
[59] |
[王少剑, 苏泳娴, 赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素. 地理学报, 2018, 73(3): 414-428.]
|
[60] |
|
[61] |
|
[62] |
[赵荣钦, 黄贤金, 郧文聚, 等. 碳达峰碳中和目标下自然资源管理领域的关键问题. 自然资源学报, 2022, 37(5): 1123-1136.]
|
[63] |
|
[64] |
|
[65] |
|
[66] |
[王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素. 地理学报, 2021, 76(12): 3103-3118.]
|
[67] |
|
[68] |
|
[69] |
[马海涛. 知识流动空间的城市关系建构与创新网络模拟. 地理学报, 2020, 75(4): 708-721.]
|
[70] |
|
[71] |
|
[72] |
|
[73] |
[尚勇敏, 宓泽锋. 长三角低碳技术创新合作对绿色经济增长的影响. 中国人口·资源与环境, 2023, 33(10): 135-145.]
|
[74] |
[殷凤春, 田楠楠, 严翔. 绿色技术转移视角下科技人才集聚的碳减排效应再检验. 科学管理研究, 2023, 41(4): 117-124.]
|
[75] |
[刘振, 李伟, 刘盛和. 中国区域人口收缩对经济增长的影响及形成机理. 地理研究, 2024, 43(4): 949-965.]
|
/
〈 |
|
〉 |