Hydrography and Surface Processes

Development processes and geomorphic effects of alluvial fans: Current research progress and future perspectives

  • YU Guo'an , 1 ,
  • HOU Weipeng 1, 2
Expand
  • 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-05-31

  Revised date: 2024-12-20

  Online published: 2025-03-25

Supported by

National Natural Science Foundation of China(42371015)

The Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0903)

Abstract

Alluvial fans are common fan-shaped depositional landforms that develop at the outlets of mountain rivers or gullies. Mature and stable alluvial fans are important areas for both human habitation and production in mountainous regions, but they also pose potential hazards associated with flash floods and debris flows. Research on alluvial fans enhances our understanding of regional environmental dynamics and geomorphic evolution, as well as contributes to the mitigation of flood and debris-flow hazards. Therefore, it holds significant scientific value and practical importance. Although considerable research has been conducted on alluvial fans, both domestically and internationally, in recent decades, much of it has focused on geomorphology (morphometry), sedimentary history and characteristics, and historical environmental reconstruction (or inversion). Investigations into the mechanisms of fan development and their geomorphic effects remain relatively underexplored. This review systematically summarizes the key advancements in the research on the dynamic processes, mechanisms, and morphodynamics of alluvial fan development. We first provide an overview of current technical approaches applied in the study of alluvial fans, including field investigations and model experiments. Then, we summarize four critical aspects of fan dynamics processes and development mechanisms: primary and secondary processes; mechanisms of flow channel avulsion; interactions between tributary and main rivers; and the impact of alluvial fan development on sediment production, transport, and geomorphic processes. Finally, we discuss several areas that require further attention in future research. Currently, field observations and monitoring of the dynamic processes of alluvial fan development are inadequate. As an essential complement to post-event field surveys and experimental model research, there is an urgent need to enhance field observations in order to expand and deepen our understanding of alluvial fan development mechanisms. This will promote scientific insights into sediment dynamics and geomorphic processes within regional river systems.

Cite this article

YU Guo'an , HOU Weipeng . Development processes and geomorphic effects of alluvial fans: Current research progress and future perspectives[J]. Acta Geographica Sinica, 2025 , 80(3) : 694 -711 . DOI: 10.11821/dlxb202503008

1 引言

冲积扇(Alluvial Fan)是指山区河流(或沟谷)出口附近由于侧向约束消失、流体速度降低导致泥沙大量沉积,沟道经淤积抬升和反复改道后形成延伸较广的扇形堆积地貌[1-2]图1)。冲积扇的发育塑造一般通过3种情形:沟道径流及其流路的不断改道、坡面流或泥石流过程[3-4]
图1 不同环境条件下的典型冲积扇地貌

注:图a来源 https://www.jpl.NASA.gov/images/pia12070-alluvial-fan-china,图b来源https://earthobservatory.NASA.gov/images/83455/alluvial-fan-in-kazakhstan,图c~d由侯伟鹏拍摄。

Fig. 1 Typical alluvial fan landforms under various environmental conditions

作为泥沙物源补给高地和沉积物容纳盆地之间的过渡带[5],冲积扇能够记录山区河流泥沙输运、堆积和侵蚀过程,也是解释和重建沉积盆地构造和环境演变的重要载体[6-10]。冲积扇的发育过程交替发挥泥沙“汇”和“源”的缓冲作用,调节流域泥沙输移动态,影响河流地貌过程[11]。同时,由于具有比周边区域更好的水分、地形和下垫面(土壤)条件,在干旱半干旱区甚至湿润区,发育成熟或进入稳定期的冲积扇多成为当地居民农业耕作、道路交通和住房建设的倾向区域。但另一方面,冲积扇又是山洪、泥石流等灾害的易发区,其潜在灾害威胁较大。因而,冲积扇研究(如地貌形态及影响因素、沉积特征及环境反演、动力过程及发育机制、地貌效应等)有助于认识山区环境及地貌演变过程和规律,促进山洪泥石流灾害合理防控和土—水资源的可持续利用,有重要的科学价值和实践意义。
目前有关冲积扇的地貌形态[12-16]和影响因素[17-21]、沉积特征和环境反演[22-27]以及冲积扇地貌类型统计分类[28-31]等已有大量研究报道,且已有若干较为深入全面的分析和总结[1-2,7,32 -33]。总体上看,现有的冲积扇研究,在区域上更多侧重干旱半干旱区的成熟扇体,对湿润半湿润区(特别是湿润高山区)关注相对较少;在研究内容上主要涉及长时间尺度(第四纪甚至更早以来)冲积扇的沉积特征、地貌形态/演变和历史环境重建等,而对短时间(千年—百年—年)甚至事件尺度上冲积扇发育动力过程和地貌变化的研究较为薄弱。不可否认的是,对短时间(特别是典型事件)尺度上冲积扇动力过程和地形地貌变化的深入认识是揭示扇体发育机制及其地貌效应的重要基础。
故而,本文述评的重点不在冲积扇的地貌特征(如形态统计关系)、分类及其影响因素,也不在扇体的沉积历史、特征及其环境反演,而侧重于扇体发育的动力过程、驱动机制和地貌动态/效应,并关注目前研究采用的主导技术路线和方法,在此基础上探讨未来研究应加强的若干方面。

2 当前研究的主导技术路线:野外调查和模型实验

野外调查和模型实验是目前认识冲积扇地貌过程和发育机制的主导技术路线和重要研究手段。总体上,对冲积扇地貌效应和演变历史的研究以野外调查分析为主,模型实验为辅,而后者近年在冲积扇发育动力过程和驱动机制(如坡面流堆积—沟道径流侵蚀循环过程、扇体流路改道等)研究方面采用较多。
野外调查常综合运用探地雷达(Ground Penetrating Radar, GPR)、电阻率断层扫描(Electrical Resistivity Tomography, ERT)、高分辨率地震反射/折射法(High-resolution Seismic Reflection/Refraction)、三维激光扫描、遥感、沉积物测年、树木年轮、粒度分析等技术手段对扇体沉积特征、野外露头与地下构型、历史构造环境与气候波动等进行研究[27,34 -38],旨在系统搜集扇体地形地貌、沉积物、流域地质及气候背景等信息,结合地质学或沉积学证据来推测或还原冲积扇发育历史及其对地质构造(地壳运动)和气候波动等外生因素的响应[39-40]。如,基于流域特征、表层地貌及扇体沉积序列的野外调查,分析智利北部Coastal Cordillera极干旱地区沿海和内陆冲积扇发育过程(泥石流活动及地表风化)对气候变化的响应[41];通过区域冲积扇地层结构及沉积相的野外踏勘,结合航空影像及地形资料,分析构造隆升和海平面升降等因素对西班牙Betic Cordillera地区第四纪冲积扇沉积特征和发育过程的影响[42];以及基于野外调查获取沉积层序、沉积物构成(粒径级配)及放射性碳定年资料,结合遥感技术,分析构造背景和气候波动共同制约下中国北方中条山李店冲积扇的发育演变[43]等。总体上看,野外调查是研究长时间尺度冲积扇发育演化历史和过程的重要手段,在这一时间尺度上,地壳运动、气候变化及海平面(侵蚀基准)变化是扇体发育演化的主要控制因素。
野外调查的一项重要工作是寻找合适的扇体出露沉积剖面,分析其沉积层序和物质构成(级配),进而推断冲积扇形成的动力过程(洪积或泥石流堆积)和发育历史。如经典案例美国加州深泉谷Trollheim冲积扇的研究,不仅产生了系列成果,而且在此基础上形成难得的学术争鸣,其中对于扇体的发育历史,基于沉积物序列解读其发育动力过程的显著差异(图2a~2b);而对于扇体发育动力过程中的单次事件,从扇体上游到中下游是否存在由泥石流到坡面洪水的空间转化以及是否存在筛状沉积等科学争论[44-48]
图2 冲积扇野外调查和模型实验研究的典型实例

注:图a~b为美国Trollheim冲积扇沉积剖面层序调查及扇体发育动力过程判断结果的显著差异[45-46],图c~d为英国Exeter大学冲积扇发育模型实验(平面尺寸3m×3m)显示坡面流堆积和沟道径流侵蚀过程[54]

Fig. 2 Typical examples of field investigations and experimental studies using physical models on alluvial fans

冲积扇发育历史和沉积特征在地质时间尺度(万年—百万年量级)上主要受外部环境控制,在地貌时间尺度(年—千年量级)上则主要受自身水沙动力过程影响,因此滑坡泥石流等大规模物质输移事件如何在几十年、几年甚至更短时间影响扇体地貌形态也是国内外不同区域诸多冲积扇野外调查的重要内容[49]。如美国加利福尼亚Dolomite冲积扇观察到泥石流条带状堆积过程呈现粗颗粒(侧堤)向细颗粒(沉积叶瓣)的明显转变[50];新西兰阿尔卑斯山脉山前冲积扇的调查认为,偶发高强度泥沙输入和间歇性的流路改道是这一区域冲积扇顶端持续堆积和切沟地貌发育的主要原因[51];中国小江流域蒋家沟冲积扇平面形态和堆积过程的原型观测显示扇体发育主要靠泥石流垄岗状堆积和改道完成,扇体发展到一定程度后沿剖面均衡堆积且纵比降保持稳定[52]
由于冲积扇发育受来源区特征、构造环境、气候波动和水力条件等诸多因素的影响,这些因素相互交织,野外调查难以单独分离出特定变量,因而在冲积扇动力过程和发育机制研究方面存在局限。模型实验具有控制/孤立特定变量的优势,能够模拟扇体坡面流堆积和沟道径流冲刷下切的循环过程,解释扇体流路改道等难以在现场监测到的偶发事件,有助于更好地理解冲积扇发育过程及外部作用对扇体沉积特征的影响[53-54]图2c~2d)。如利用垂直摄影连续监测冲积扇加积过程、水流流态和坡面流/沟道径流的时空交替变化[55];通过冲积扇和扇形三角洲的对比实验研究两类扇体发育主控影响因素的差异,认为前者主要受控于水沙动力过程,后者则主要受三角洲下游海洋/湖泊等水体顶托影响[56]图3a~3f);通过来水来沙过程的差异性调控和对比(如平均流量及来沙量相同但流量变幅不同)探索冲积扇发育过程的异同及关键表征因子,实验发现,不同的流量过程塑造的扇体坡降也不同,更高的洪峰流量会加快扇体侵蚀/堆积过程并提高扇面水流横向迁移率,且平均流量并非扇体坡降和地貌变化的合适预测因子[57]。此外,在数值模型研究方面,通过将河道水沙运动的动力学公式与冲积扇频繁改道的整体效应进行量化组合,推导出轴向对称扇体平均床坡和高程的时空演变模型[58],并应用于矿山尾库冲积扇发育模拟和预测[59-60]
图3 有关冲积扇内生循环过程的部分模型实验结果

注:图a~f为扇体坡面流和沟道径流交替循环过程[56],图g~l显示冲积扇发育过程伴随沟道发育和流路改道,其中深灰色区域为扇体,白色区域为沟道径流[77]

Fig. 3 Some experimental results from model studies related to the autogenic cyclic processes of alluvial fans

物理和数学模型实验研究对于认识冲积扇发育过程、机制及地貌变化正发挥日益重要的作用。在合理控制和孤立特定要素/因子的条件下,未来有关冲积扇发育的模型实验应进一步考虑自然过程的复杂性,实验规模和水、沙动力过程宜采用大尺度(甚至全尺度)工况;同时,结合三维水沙—地貌动力学数学模型开展冲积扇发育动力过程精细模拟,以深入揭示扇体发育机制,准确反映地貌动态和变化。
另外,近年来遥感和GIS技术在冲积扇识别,地貌形态分析,甚至扇体沉积特征(如表面物质构成)、发育历史和过程反演(如古径流重建)等研究方面日益发挥重要作用,不仅在地球[21,30 -31],而且在火星[61-65]、土卫六[66]等其他行(卫)星冲积扇地貌研究方面也取得积极进展。

3 动力过程和发育机制

尽管从根本上看冲积扇的发育是区域地质构造、基岩岩性、地壳运动、气候特征和侵蚀基准(如海/湖平面)变化等众多环境因素共同影响的产物,但这些环境因素一般认为是冲积扇发育的外生因素[54],其对冲积扇发育动力事件(洪水、泥石流等)及过程的影响通常在长时间尺度上才能显现,换言之:冲积扇发育与这些外生因素的影响在响应时间上存在滞后[67-71]。既往的沉积学或地质学记录很难将冲积扇发育动力过程与历史构造活动、气候波动以及基准面变化等外生因素较好匹配[72-73],即便是精确的测年方法也仅能在百年、千年甚至更长的时间尺度上构建出相对可靠的框架。因此,本文更多关注冲积扇发育的内生动力过程和机制[53,74 -76],如冲积扇坡面流和沟道径流循环交替和流路发育/改道过程等[56,77 -78]图3),并重点阐述扇体发育的主要/次要过程、扇面流路改道机制以及支流(冲积扇)与主河的相互影响。

3.1 主要与次要过程

冲积扇是在物质堆积和水流侵蚀的竞争过程中形成的[5,79 -80],其中堆积主要发生在低频高含沙洪水或泥石流事件期间而侵蚀通常发生在含沙量较低的径流期间[2,81]。相关研究将冲积扇的净堆积和净侵蚀过程分别称为主要和次要地貌过程[4,7],前者指将物源从流域上游集水区或山脉前沿输送到冲积扇的过程,包括崩塌、滑坡、泥石流、高含沙水流等大规模物质输移事件,尽管其发生频率低且持续时间短,但往往能够塑造扇体地貌及流路网络[82-83];后者则多指重新起动扇体沉积物的一般径流或小规模洪水事件[4,80,84 -85],泥石流的尾流或其后续径流也可能在主要事件期间引发沟道冲刷和溯源侵蚀,产生与次要地貌过程类似的影响[86-88]。对于干旱半干旱地区冲积扇,主要事件的发生频率可能为十年至百年一遇,其间次要事件很少发生;而对于湿润半湿润地区冲积扇,主要事件可能每几年发生一次但次要事件在主要事件的间歇期持续进行,因此小规模但高频率次要事件对这些区域冲积扇地貌演变也不可忽略[80,89]。另外,次要事件不仅包括小规模洪水等径流过程,地表风化侵蚀、生物扰动以及植被生长等也会对扇体发育过程产生重要影响[4,89 -90]
坡面流和沟道径流循环交替是冲积扇发育的显著特征[3,59,91]图3a~3f),其循环交替过程可大致概括为5个阶段[78]:① 坡面流状态下扇体逐渐变陡至临界坡度;② 坡面流集中使扇体强侵蚀部位逐渐形成明确主沟道;③ 主沟道发育成熟并贯穿整个扇体;④ 沟道末端淤积膨胀形成叶瓣状堆积;⑤ 沟道回填并恢复坡面流状态。模型实验显示,沟道径流常是由扇体坡面流淤积以及随之而来的溯源侵蚀形成的,沉积物的这种存储释放和沟道坡度变化在冲积扇发育过程中发挥重要作用[53,55 -56]
需要指出,对冲积扇主要/次要过程的认识和区分是一种辩证思维,它客观反映了冲积扇发育的完整情景,即野外河流(沟谷)出口的扇形地貌实际上是泥沙堆积和径流侵蚀冲刷作用共同塑造形成的。尽管河流(沟谷)出口的扇形地貌发育多由洪水/泥石流等强输沙事件引发的泥沙堆积过程主导,但在洪水/泥石流事件的间歇期径流侵蚀(甚至地表风化、植被生长等)对扇体地形地貌的再改造作用也是冲积扇发育的重要环节,因而不应忽视。

3.2 流路改道机制

冲积扇发育极少通过理想化的泥沙均匀平铺堆积过程形成,多数情形下是由沟道/流路引导而呈条带状堆积的零散过程的集合(累积)体现,即扇体发育是“沟道/流路不断迁移、废弃和堆积/侵蚀”相结合的动态循环过程。沟道的摆动、迁移与废弃实际上就是流路改道过程,它是冲积扇发育的核心和关键,能够直接影响甚至决定泥沙在扇体表面的输送路径和堆积位置,尽管相关研究显示这一个过程的作用机制和触发因素对于不同动力类型的冲积扇可能存在差异[53,76,78]图4)。
图4 两类典型动力过程影响下冲积扇内生循环—扇体流路改道过程

注:改自文献[76]。

Fig. 4 Autogenic cycles and flow path avulsions influenced by two typical dynamic processes

扇体流路改道通常在两种情形下发生:一是流路沟床高于周围扇面;二是沟道出现局部堵塞并发生淤积回填。对流路改道的判定,有学者将其界定为冲积扇扇顶附近形成新流路并输送旧流路至少50%流量的事件[92]。有研究认为冲积扇发育存在补偿性堆积倾向[93],即扇体堆积更倾向于发生在地势较低的区域。作为上游沉积物和径流的输送通道,冲积扇流路内部及附近的泥沙堆积速率要明显高于周边区域,且速率随着流路距离的增加而减少[94-95],这一过程会使流路沟床及两岸相对于两侧漫流区逐渐升高(即“超高”现象),当超高形成的局部坡降超过流路坡降,原流路在一定动力过程扰动和激发下废弃而选择或开辟另一条路径[96-97]。有关冲积扇的野外调查和模型实验显示,一旦流路沟床高出周围漫流区0.5~1.0个沟道深度就可能引发流路改道[98-99]
实验研究表明,扇体流路也可能由于进积作用出现局部堵塞和淤积回填进而发生改道,此时超高很小甚至没有超高[100-101],一个典型的例子是通过双峰混合砂砾石冲积扇实验观察到的水流改道循环模式[77]图3g~3l),主要包括以下过程:① 坡面流侵蚀扇体并逐渐集中形成沟道径流;② 水流携带泥沙在流路末端落淤并向前推进扩张形成近似半圆形堆积体;③ 流路坡度降低造成水流输沙能力减弱并导致堆积过程从扇缘向河道上游溯源发展;④ 流路被泥沙填满后发生改道从而使沟道径流再次转变为坡面流。在上述实验中还发现,尽管洪水发生后新流路的选择难以预测,然而一旦建立起由4~5个流路组成的水流网络,那么即便先前流路已基本被沉积物填满,后续水流仍多倾向于返回旧流路而非冲刷形成新流路,其原因一种观点认为可能是由于旧流路具有从扇体顶部向下游的坡度优势[102];另一种观点则认为先前流路提供了贯穿扇体(扇顶到扇缘)的现成路径,同时沟道内低粘性松散堆积物比扇体漫流区的淤泥等细颗粒粘性物质更容易侵蚀[103]。不过,尽管这一判断得到了野外观察和模型实验的支持[102],仍有疑问等待解释。旧流路高程普遍高于周边漫流区,为何会重新选择旧流路,何种因素推动选择旧流路[104-105]?
在研究扇体流路改道与水流强度—频率关系时发现[106],大流量过程会漫过沟道并立即(或在后续事件中)引发决堤,而小到中等规模水流则会造成沟道堵塞并在下一次大流量过程中引发改道。采用高空间分辨率(1 mm)和高频(1 min)地形监测和正射影像数据精细捕捉扇体流路改道过程时发现,流路泥沙淤积(尤其是不易运动的大颗粒泥沙)会显著影响改道循环过程,导致这一过程呈现非周期性特征[107]。相关实验还表明,流路改道受沟道切深、两岸约束、扇体坡度、物质构成、流动路径和堆积历史等诸多因素的影响,并非泥石流强度越大或发生频率越高扇体流路就越容易改道[106,108 -109]。流路改道是一个难以预测的随机过程,受具有不同时间尺度的两类主导过程影响和制约:在单一事件尺度上,沉积物可能会回填堵塞沟道并迫使后续水流进入新流路;而从数十次事件尺度的整体上看,地形补偿效应会使沉积位置逐渐向地势较低的区域转移[110],且无论是“回填”还是“超高”,改道发生频率都与沉积物淤塞填满流路所需要的时间有关[98,111]
此外,部分研究通过扇体的野外调查尝试分析其流路改道成因和空间分布特征。如,基于美国加利福尼亚盐谷(Saline Valley)冲积扇泥石流沉积特征、流路尺寸、改道位置及河床超高的空间相关性分析,推断冲积扇上大部分流路改道是由沟道堵塞引起的[112];根据加拿大英属哥伦比亚西南部30个活跃泥石流冲积扇的遥感影像和野外调查,发现绝大部分冲积扇改道发生在自扇顶往下游最大扇体长度的20%~40%且在扇面—沟道交叉点上游的区间范围内[113]
总体上,目前有关冲积扇流路改道的研究和认识多基于室内模型实验,部分来自野外调查,且相关工作主要侧重于分析改道现象和特征,在探究其动力过程和关键因子方面仍较为薄弱[114-115]。受限于天然扇体改道较长的间隔时间尺度(数年至数百年),且其发生具有强烈的时间/空间不确定性,基于野外原型实验观测的相关研究更为稀少,这方面的工作亟待加强。

3.3 支流(冲积扇)与主河的相互影响

冲积扇作为物源补给高地和沉积物容纳盆地之间的过渡带,其发育在客观上具有泥沙短期高强度存储与长期低强度释放效应,通过调节泥沙输移强度进而影响与其相连河流系统的泥沙动态[5,11,116]。具体而言,冲积扇通过蓄积和释放来自支流的沉积物影响河流泥沙从源区向沉积盆地输送的持续时间以及主支流交汇处沉积物量、空间分布和扇体自身的形态变化[117-119]图5a),主河反过来会根据其上游和支流的水沙条件来调整自身宽度、坡度以及沉积物输送效率和粒度分布等[120-122]。有关冲积扇(支流)影响主河水沙过程和地貌效应的模型实验和野外调查均有开展[119,123 -124],如,利用模型实验探讨主河对支流泥沙入汇堆积的响应和调整,发现支流入汇堆积处主河上游河床调整长度显著长于下游河床(上游约为下游的两倍)[125];基于藏东南帕隆藏布支流天摩沟冲积扇的年际多系列地貌变化监测和对比,分析扇体发育过程及主河(帕隆藏布)地貌响应[112]等。
图5 冲积扇(支流)与主河地貌过程的相互影响

Fig. 5 The interaction of geomorphic processes between alluvial fan tributaries and the main river

主河对支流的影响主要通过交汇处主河河床冲刷下切或淤积抬升造成支流下游边界侵蚀基准变化,支流调整一般遵循自下(游)而上(游)的传播方向[5,112,126],如图5b所示藏东南地区天摩沟冲积扇沟道随交汇处主河(帕隆藏布)河床高程下降而溯源侵蚀下切。同时,主河水流持续冲刷侵蚀冲积扇下游边缘会导致从支流到主河的沉积物供应量增加,这种切趾作用通常发生在冲积扇与主流交汇处上游侧,使扇体更倾向于在交汇处下游侧发育并最终呈现不对称性形态[127-128]。一个典型实例是加拿大Yukon流域和美国Alaska流域主支流交汇区众多冲积扇扇趾上游侧存在明显的裁切倾向且下游侧轮廓相较于上游侧明显更长,不过冲积扇水流流路并没有明显的偏转倾向[129]
总的来说,支流与主河之间的复杂反馈会干扰外生因素对河流系统的影响,并使得通过冲积扇沉积物重建河流系统演变历史变得困难[130]。需要指出,主支流相互作用对于很多区域冲积扇(特别是扇体受到纵向限制的峡谷区)发育过程及地貌变化的研究是不可回避的重要影响因素,未来应结合模型实验和典型冲积扇的野外原形观测加强这方面的工作。

4 冲积扇发育对泥沙产输和地貌过程的影响

冲积扇是在主要事件和次要事件的交替和相互竞争中形成的[7],其发育生长通常伴随高强度泥沙搬运和重复的堆积—侵蚀过程,不但支流沟道自身发生强烈冲淤变化,大量泥沙进入主河还会改变主支流交汇处的水沙动态和地貌形态[5,11],并对流域泥沙产输和河流地貌过程产生重要影响[112,125]。在泥沙输移方面,山洪/泥石流等强输沙过程在沟口堆积形成冲积扇,扇体发育生长并延伸至主河,而在大规模物质输移事件间歇期,一般径流过程持续冲蚀扇体外缘(扇趾)和扇面流路,原本淤积的泥沙随着扇体“切趾”和沟槽下切而逐步释放。因此,冲积扇在发育过程中交替充当流域上游集水区泥沙的“汇”和相邻沉积物容纳盆地泥沙的“源”[11,32,118],通过调节泥沙分布和输移过程在河流系统中实际发挥着缓冲和耦合作用[116,131 -132]。在河流/河谷地貌影响方面,研究分析支流高强度输沙与主河相互作用[133-135]及堵河机理[136-137],并关注高山峡谷区泥石流冲积扇发育过程及其影响下河谷地貌长期演变规律[138-140]
高海拔或高纬度山区(简称高山区)是气候变化的敏感区。近年来,气候变化及其引起的灾害过程(如崩塌、滑坡、泥石流、山洪等)对高山区地貌的影响逐渐受到关注,相关研究基于遥感影像、高精度RTK测量、无人机(或LiDAR)航拍并结合三维地形重建技术分析典型扇体地貌演变动态[20,37,112,141 -143]。不过,由于野外监测困难,数据资料匮乏,高山区冲积扇发育特征及其地貌效应的研究报道仍较少。

5 研究展望

目前国内外学者针对冲积扇地貌特征[12,14,17,137,144]、发育过程[52,80,145]和演变机制[78,107,110,146]等已开展不少研究工作。总体上,现有研究技术路线和关注重点多基于已经发育成熟或步入间歇期的冲积扇野外调查获得地质学或沉积学证据来推测/演绎冲积扇发育历史、背景和成因[6,22,26 -27,147],或通过模型实验研究冲积扇发育过程(堆积、侵蚀、改道等)及影响因素[55-56,119,148 -150],而对冲积扇发育动力过程和地貌变化的野外原型观测偏少;在研究区域及对象方面则主要侧重于干旱半干旱区冲积扇[6-7,13,19,32,44,84],对湿润区特别是位于湿润高山区环境冲积扇[8,16,51,79,151 -152]的关注相对较少,且目前对处于正在发育成长阶段的当代冲积扇研究不够[7]
尽管模型实验研究对于认识冲积扇发育机制和动力过程十分重要,但野外原型观测研究仍不可或缺,野外实测资料的缺乏客观上将束缚对冲积扇发育动力过程的深入认识,而这又将进一步限制冲积扇发育动态的科学预判和灾害防控能力[54,77]。因而,未来冲积扇研究应该在以下方面加强:

5.1 以原型观测数据为重要基础的冲积扇发育过程和机制研究

野外原型观测是物理/数值模型实验和野外调查研究不可或缺的重要补充,对于认识冲积扇发育动力过程及地貌变化,揭示发育机制,明晰关键节点和因子有重要意义。野外原型观测相比于山洪/泥石流等动力事件发生之后的野外调查更强调“实时性”,因而更有助于捕捉冲积扇发育演变的动态过程和关键变化节点。然而,开展野外原型观测捕捉山洪/泥石流事件及冲积扇实时变化毕竟相当困难,这也是目前冲积扇野外原形观测研究较为稀少的重要原因。创新观测思路、方式和方法,充分挖掘和应用新兴装备和技术手段,将有助于拓展野外原形观测的应用边界和实际可行性,促进对冲积扇发育过程和动力机制的科学认识(图6)。
图6 以原型观测为重要基础的冲积扇发育过程/机制研究的可能思路

注:GPR为探地雷达(Ground-penetrating Radar)。

Fig. 6 Possible ideas for studying the development processes and mechanisms of alluvial fans based on field observations

5.2 冲积扇发育机制、动力过程及地貌效应的深入揭示

(1)冲积扇流路改道的临界条件和主控因子。尽管已有研究对扇体流路的改道机制开展了积极探索[76,92,100,106,114],但多限于室内模型实验(概化一维或二维)和数值模拟。由于问题复杂,物理和数值模型实验的边界条件、(水沙)动力过程及泥沙特征相对于自然条件趋于理想化,难以客观反映野外自然过程。因而,现阶段对引发冲积扇流路改道的临界条件和动力过程的理论阐释仍缺乏坚实可靠的野外原型观测数据的验证和支撑。故此,对改道的临界条件和主控因子的认识是理解泥石流冲积扇发育演变的重要一环。其中,需要明晰的科学问题包括:改道在什么条件下发生?如何触发?哪些因子在触发改道过程中发挥关键作用?冲积扇流路改道与不同时间尺度的影响因素(如气候变化和地壳运动等长时间尺度的外生因素;沟道形成和堆积/侵蚀等短时间尺度的内生因素)有何关系?
(2)冲积扇发育与泥沙产输动力过程在时空尺度上的相互作用。冲积扇的发育过程实质上是泥沙蓄积(“汇”)和释放(“源”)的过程,因而冲积扇发育与泥沙产输在时空尺度存在相互转化和影响。尽管在概念上这一过程的逻辑链条较为清晰,但缺乏原形观测和定量分析等实证研究。对泥沙蓄积和释放的动力过程、相对量级、强度、持续时间及主要影响因素(如,泥石流/洪水事件规模和强度、支流及主河径流相对强弱、冲积扇自身地貌特征等)还不够明晰,这种泥沙动态调蓄对主河河流地貌有何种影响也需要进一步厘清。应结合冲积扇地貌变化的野外精细测量和冲淤量计算,开展定量分析。基于系统的野外观测和分析,认识和明晰这一过程将有助于理解区域泥沙产—输—沉积及地貌变化动态。
(3)高山区泥石流冲积扇的地貌效应。高山区是泥石流等地质灾害的易发区,降雨、气温等多营力及其耦合作用均可在这一区域激发形成泥石流等强输沙过程。全球气候变化(如升温和强降雨事件增多)使高山区潜在孕灾环境更易于成灾,山洪/泥石流等地质灾害事件趋于活跃。高山区泥石流强输沙过程在沟口堆积形成冲积扇并多延伸至主河,冲积扇成为支流和主河相互角力的前沿,不仅显著改变沟道自身泥沙输移动态和地貌过程,还会影响主河河道及河谷地貌的长期演变。其中,泥石流冲积扇发育过程对泥石流沟道自身、主河地貌过程甚至区域河谷地貌都有重要影响。然而,目前这种影响的相关研究还不多,特别是冲积扇泥沙蓄积(“汇”)和释放(“源”)过程及主河地貌响应、冲积扇—主河交互作用机制需要进一步明晰,以深入认识和理解区域泥沙输移动态及河流/河谷地貌的长期变化趋势。
另外,目前针对地球及其他行(卫)星(如火星、土卫六等)的冲积扇研究方兴未艾。随着自然及实验扇体样本数量和附属配套数据资料的不断积累及对扇体发育过程/机制科学认识的逐渐深化,或可进一步尝试利用大数据甚至人工智能AI拓展相关分析,有可能在不同于传统研究范式(侧重于过程分析和成因、机制揭示)的维度上获得冲积扇发育动力过程及地貌效应的新的科学认识(如,大数据驱动的扇体流路改道关键因子提取及改道时间/位置的高时空分辨率预测),因而也是一个值得探索和挖掘的潜在技术路径。

6 结语

冲积扇发育受区域构造活动、地质岩性、气候变化、补给条件、流域出口地形和侵蚀基准、自身水沙动力过程(沟道径流、坡面流、泥石流)等众多外生和内生因素的共同影响。在内生因素方面,冲积扇发育主要受控于两个动力过程,即泥沙堆积和径流侵蚀过程,前者发挥主导作用,决定扇体规模和宏观形态;后者发挥次要作用,调整扇体形态和沟道地貌。冲积扇发育是“流路改道和堆积/侵蚀”相结合的动态循环过程,其关键和核心是扇体流路改道,能够直接影响甚至决定泥沙在扇体表面的输送路径和堆积位置。冲积扇尤其泥石流冲积扇的形成多伴随高强度泥沙搬运和重复的堆积—侵蚀过程,改变河道水沙动态和地貌形态,并对河流地貌长期演变产生重要影响,具有显著的地貌效应。
总体上,现有研究技术路线多基于野外调查和模型实验,较多关注干旱半干旱区已经发育成熟的冲积扇;而对扇体发育动力过程和地貌变化的野外原型观测薄弱,对湿润高山区环境冲积扇的关注较少,对处于正在发育成长阶段的当代冲积扇研究不够。尽管野外调查和模型实验研究对于认识冲积扇发育历史、动力过程和地貌效应十分重要,但野外原型观测仍不可或缺。未来应进一步加强以原型观测数据为重要基础的冲积扇发育过程和机制研究,明晰冲积扇的地貌效应,促进对区域泥沙产输动态和河流地貌变化的科学认识。
[1]
Bull W B. The alluvial-fan environment. Progress in Physical Geography, 1977, 1(2): 222-270.

[2]
Bowman D. Principles of Alluvial Fan Morphology. Dordrecht: Springer, 2019.

[3]
Schumm S A, Mosley M P, Weaver W. Experimental Fluvial Geomorphology. New York: Wiley-Interscience, 1987.

[4]
Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 1994, 64(3A): 450-489.

[5]
Mather A E, Stokes M, Whitfield E. River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive. Quaternary Science Reviews, 2017, 166: 74-90.

[6]
Ballantyne C K, Whittington G. Late Holocene floodplain incision and alluvial fan formation in the central Grampian Highlands, Scotland: Chronology, environment and implications. Journal of Quaternary Science, 1999, 14(7): 651-671.

[7]
Blair T C, McPherson J G. Processes and forms of alluvial fans// Parsons A J, Abrahams A D. Geomorphology of Desert Environments. 2nd ed. Berlin: Springer, 2009: 413-467.

[8]
Franke D, Hornung J, Hinderer M. A combined study of radar facies, lithofacies and three-dimensional architecture of an alpine alluvial fan (Illgraben fan, Switzerland). Sedimentology, 2015, 62(1): 57-86.

[9]
D'Arcy M, Roda-Boluda D C, Whittaker A C. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California. Quaternary Science Reviews, 2017, 169: 288-311.

[10]
Arboleda-Zapata M, Guillemoteau J, Lucia A, et al. Tracing past extreme floods on an alluvial fan using geophysical surveying. Earth Surface Processes and Landforms, 2023, 48(15): 3273-3286.

[11]
Harvey A M. The coupling status of alluvial fans and debris cones: A review and synthesis. Earth Surface Processes and Landforms, 2012, 37(1): 64-76.

[12]
Hooke R L, Rohrer W L. Geometry of alluvial fans: Effect of discharge and sediment size. Earth Surface Processes and Landforms, 1979, 4(2): 147-166.

[13]
Milana J P, Ruzycki L. Alluvial-fan slope as a function of sediment transport efficiency. Journal of Sedimentary Research, 1999, 69(3): 553-562.

[14]
Wang Ping, Lu Yanchou, Ding Guoyu, et al. Response of the development of the Shule River alluvial fan to tectonic activity. Quaternary Sciences, 2004, 24(1): 74-81.

[ 王萍, 卢演俦, 丁国瑜, 等. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应. 第四纪研究, 2004, 24(1): 74-81.]

[15]
de Scally F A, Owens I F. Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2004, 29(3): 311-322.

[16]
Zhou X, Chen Y, Sun W, et al. Delineating individual alluvial fans and morphological analysis based on digital elevation models. Geomorphology, 2025: 109629. DOI: 10.1016/j.geomorph.2025.109629.

[17]
Li Xinpo, Mo Duowen, Zhu Zhongli. Developments of alluvial fans and their catchments in Houma basin. Acta Geographica Sinica, 2006, 61(3): 241-248.

DOI

[ 李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律. 地理学报, 2006, 61(3): 241-248.]

[18]
Densmore A L, Allen P A, Simpson G. Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. Journal of Geophysical Research: Earth Surface, 2007, 112: F01002. DOI: 10.1029/2006 JF000474.

[19]
Stock J D, Schmidt K M, Miller D M. Controls on alluvial fan long-profiles. Geological Society of America Bulletin, 2008, 120(5/6): 619-640.

[20]
De Haas T, Kleinhans M G, Carbonneau P E, et al. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: Controls and processes. Earth-Science Reviews, 2015, 146: 163-182.

[21]
Woor S, Thomas D S G, Parton A, et al. Morphology and controls of the mountain front fan systems of the Hajar Mountains, south-east Arabia. Earth-Science Reviews, 2023, 237: 104316. DOI: 10.1016/j.earscirev.2023.104316.

[22]
Brazier V, Whittington G, Ballantyne C K. Holocene debris cone evolution in Glen Etive, Western Grampian Highlands, Scotland. Earth Surface Processes and Landforms, 1988, 13(6): 525-531.

[23]
Ke Baojia, Chen Changming, Chen Zhiming, et al. Sedimentology of gravelly alluvial fans on the western margin of Late Triassic, Ordos Basin. Acta Sedimentologica Sinica, 1991, 9(3): 11-21.

[ 柯保嘉, 陈昌明, 陈志明, 等. 鄂尔多斯盆地西缘砾质冲积扇沉积学特征. 沉积学报, 1991, 9(3): 11-21.]

[24]
Blair T C. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California. Sedimentary Geology, 2000, 132(3-4): 233-262.

[25]
Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture. Journal of Palaeogeography (Chinese Edition), 2016, 18(4): 497-512.

[ 吴胜和, 冯文杰, 印森林, 等. 冲积扇沉积构型研究进展. 古地理学报, 2016, 18(4): 497-512.]

DOI

[26]
Rits D S, van Balen R T, Prins M A, et al. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change: A reevaluation of the paleogeographical setting of Dali Man site. Quaternary Science Reviews, 2017, 166: 339-351.

[27]
Schoch-Baumann A, Blöthe J H, Munack H, et al. Postglacial outsize fan formation in the Upper Rhone valley, Switzerland: Gradual or catastrophic? Earth Surface Processes and Landforms, 2022, 47(4): 1032-1053.

[28]
Tsai Y F. Three-dimensional topography of debris-flow fan. Journal of Hydraulic Engineering, 2006, 132(3): 307-318.

[29]
Williams R M E, Zimbelman J R, Johnston A K. Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars. Geophysical Research Letters, 2006, 33: L10201. DOI: 10.1029/2005GL025618.

[30]
Tomczyk A M. Morphometry and morphology of fan-shaped landforms in the high-Arctic settings of central Spitsbergen, Svalbard. Geomorphology, 2021, 392: 107899. DOI: 10.1016/j.geomorph.2021.107899.

[31]
Han Pan, Yu Guoan, Hou Weipeng. Geomorphological development characteristics and spatial differentiation of alluvial fans in high mountain canyon areas: A case study in the Parlung Tsangpo Basin, southeast Xizang. Progress in Geography, 2024, 43(4): 784-798.

[ 韩盼, 余国安, 侯伟鹏. 藏东南帕隆藏布流域冲积扇地貌发育特征及空间分异研究. 地理科学进展, 2024, 43(4): 784-798.]

DOI

[32]
Harvey A M. Dryland alluvial fans// Thomas D S G. Arid Zone Geomorphology: Process, Form and Change in Drylands. 3rd ed. Oxford: John Wiley & Sons, Ltd, 2011: 333-371.

[33]
Ventra D, Clarke L E. Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. The Geological Society of London, 2018, 440(1): 1-21.

[34]
Baumann F, Kaiser K F. The multetta debris fan, eastern Swiss Alps: A 500-year debris flow chronology. Arctic, Antarctic, and Alpine Research, 1999, 31(2): 128-134.

[35]
Sadura S, Martini I P, Endres A L, et al. Morphology and GPR stratigraphy of a frontal part of an end moraine of the Laurentide Ice Sheet: Paris Moraine near Guelph, ON, Canada. Geomorphology, 2006, 75(1/2): 212-225.

[36]
Hornung J, Pflanz D, Hechler A, et al. 3D architecture, depositional patterns and climate triggered sediment fluxes of an alpine alluvial fan (Samedan, Switzerland). Geomorphology, 2010, 115(3/4): 202-214.

[37]
Schürch P, Densmore A L, Rosser N J, et al. Dynamic controls on erosion and deposition on debris-flow fans. Geology, 2011, 39(9), 827-830.

[38]
Brardinoni F, Picotti V, Maraio S, et al. Postglacial evolution of a formerly glaciated valley: Reconstructing sediment supply, fan building, and confluence effects at the millennial time scale. GSA Bulletin, 2018, 130(9-10): 1457-1473.

[39]
Chen L Q, Steel R J, Guo F S, et al. Alluvial fan facies of the Yongchong basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China. Journal of Asian Earth Sciences, 2017, 134: 37-54.

[40]
Gao L M, Wang X Y, Yi S W, et al. Episodic sedimentary evolution of an alluvial fan (Huangshui Catchment, NE Tibetan Plateau). Quaternary, 2018, 1(2): 16. DOI: 10.3390/quat1020016.

[41]
Hartley A J, Mather A E, Jolley E, et al. Climatic controls on alluvial-fan activity, Coastal Cordillera, northern Chile. The Geological Society of London, 2005, 251(1): 95-116.

[42]
Viseras C, Calvache M L, Soria J M, et al. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain. Geomorphology, 2003, 50(1-3): 181-202.

[43]
Hu X, Li Y L, Lv S H, et al. Climatically-and tectonically-controlled development of the late Quaternary alluvial fan in the north piedmont of Zhongtiao Shan (ZTS), north China. Quaternary International, 2021, 604: 51-59.

[44]
Hooke R L. Processes on arid-region alluvial fans. The Journal of Geology, 1967, 75(4): 438-460.

[45]
Miall A D. Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir, 1978, 5: 597-604.

[46]
Blair T C, McPherson J G. The Trollheim alluvial fan and facies model revisited. Geological Society of America Bulletin, 1992, 104(6): 762-769.

[47]
Hooke R L, Blair T C, McPherson J G. The Trollheim alluvial fan and facies model revisited: Discussion and reply. Geological Society of America Bulletin, 1993, 105(4): 563-567.

[48]
Milana J P. The sieve lobe paradigm: Observations of active deposition. Geology, 2010, 38(3): 207-210.

[49]
Nicholas A P, Quine T A. Modeling alluvial landform change in the absence of external environmental forcing. Geology, 2007, 35(6): 527. DOI: 10.1130/G23377A.1.

[50]
Blair T C, McPherson J G. Recent debris-flow processes and resultant form and facies of the Dolomite alluvial fan, Owens Valley, California. Journal of Sedimentary Research, 1998, 68(5): 800-818.

[51]
Davies T R H, Korup O. Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs. Earth Surface Processes and Landforms, 2007, 32(5): 725-742.

[52]
Zhang Jinshan, Shen Xingju, Wei Junlin. Observational study on the characteristics of development and evolvement of debris flow deposit fan. Resources and Environment in the Yangtze Basin, 2010, 19(12): 1478-1483.

[ 张金山, 沈兴菊, 魏军林. 泥石流堆积扇发育演化特征观测研究. 长江流域资源与环境, 2010, 19(12): 1478-1483.]

[53]
Clarke L, Quine T A, Nicholas A. An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 2010, 115(3/4): 278-285.

[54]
Clarke L E. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 2015, 244: 135-145.

[55]
Nicholas A P, Clarke L, Quine T A. A numerical modelling and experimental study of flow width dynamics on alluvial fans. Earth Surface Processes and Landforms, 2009, 34(15): 1985-1993.

[56]
Van Dijk M, Kleinhans M G, Postma G, et al. Contrasting morphodynamics in alluvial fans and fan deltas: Effect of the downstream boundary. Sedimentology, 2012, 59(7): 2125-2145.

[57]
Leenman A S, Eaton B C, MacKenzie L G. Floods on alluvial fans: Implications for reworking rates, morphology and fan hazards. Journal of Geophysical Research: Earth Surface, 2022, 127(2): e2021JF006367. DOI: 10.1029/2021JF 006367.

[58]
Parker G, Paola C, Whipple K X, et al. Alluvial fans formed by channelized fluvial and sheet flow: I. Theory. Journal of Hydraulic Engineering, 1998, 124(10): 985-995.

[59]
Whipple K X, Parker G, Paola C, et al. Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. The Journal of Geology, 1998, 106(6): 677-694.

[60]
Paola C, Parker G, Mohrig D C, et al. The influence of transport fluctuations on spatially averaged topography on a sandy, braided fluvial fan// Harbaugh J W, Watney W L, Rankey E C, et al. Numerical Experiments in Stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Society for Sedimentary Geology, 1999, 62. DOI: 10.2110/pec.99.62.0211.

[61]
Moore J M, Howard A D. Large alluvial fans on Mars. Journal of Geophysical Research: Planets, 2005, 110: E04005. DOI: 10.1029/2004JE002352.

[62]
Kleinhans M G, van de Kasteele H E, Hauber E. Palaeoflow reconstruction from fan delta morphology on Mars. Earth and Planetary Science Letters, 2010, 294(3/4): 378-392.

[63]
Davis J M, Grindrod P M, Banham S G, et al. A record of syn-tectonic sedimentation revealed by perched alluvial fan deposits in Valles Marineris, Mars. Geology, 2021, 49(10): 1250-1254.

DOI

[64]
Wilson S A, Morgan A M, Howard A D, et al. The global distribution of craters with alluvial fans and deltas on Mars. Geophysical Research Letters, 2021, 48(4): e2020GL091653. DOI: 10.1029/2020GL091653.

[65]
Mondro C A, Moersch J E, Fedo C M. An updated global survey of alluvial fans on Mars: Distinguishing alluvial fans from other fan-shaped features through morphologic characterization. Icarus, 2023, 389: 115238. DOI: 10.1016/j.icarus.2022.115238.

[66]
Birch S P D, Hayes A G, Howard A D, et al. Alluvial fan morphology, distribution and formation on Titan. Icarus, 2016, 270: 238-247.

[67]
Brunsden D. A critical assessment of the sensitivity concept in geomorphology. Catena, 2001, 42(2-4): 99-123.

[68]
Harvey A M. Effective timescales of coupling within fluvial systems. Geomorphology, 2002, 44(3/4): 175-201.

[69]
Viles H A, Goudie A S. Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Reviews, 2003, 61(1/2): 105-131.

[70]
Oguchi T, Oguchi C T. Late Quaternary rapid talus dissection and debris flow deposition on an alluvial fan in Syria. Catena, 2004, 55(2): 125-140.

[71]
Thomas M F. Landscape sensitivity to rapid environmental change: A Quaternary perspective with examples from tropical areas. Catena, 2004, 55(2): 107-124.

[72]
Pope R J J, Wilkinson K N. Reconciling the roles of climate and tectonics in Late Quaternary fan development on the Spartan piedmont, Greece. Geological Society, London, Special Publications, 2005, 251(1): 133-152.

[73]
Dorn R I. The role of climatic change in alluvial fan development// Parsons A J, Abrahams A D. Geomorphology of Desert Environments. 2nd ed. Berlin: Springer, 2009: 723-742.

[74]
Miall A D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin:Springer, 1996.

[75]
Van Dijk M, Postma G, Kleinhans M G, et al. Autogenic cycles of sheet and channelised flow on fluvial fan-deltas. River, Coastal, and Estuarine Morphodynamics: RCEM 2007. London: Taylor and Francis Group, 2008, 2: 823-828.

[76]
de Haas T, van den Berg W, Braat L, et al. Autogenic avulsion, channelization and backfilling dynamics of debris-flow fans. Sedimentology, 2016, 63(6): 1596-1619.

[77]
Reitz M D, Jerolmack D J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 2012, 117: F02021. DOI: 10.1029/2011JF002261.

[78]
Hamilton P B, Strom K, Hoyal D C J D. Autogenic incision-backfilling cycles and lobe formation during the growth of alluvial fans with supercritical distributaries. Sedimentology, 2013, 60(6): 1498-1525.

[79]
Crosta G B, Frattini P. Controls on modern alluvial fan processes in the central Alps, northern Italy. Earth Surface Processes and Landforms, 2004, 29(3): 267-293.

[80]
Vincent L T, Eaton B C, Leenman A S, et al. Secondary geomorphic processes and their influence on alluvial fan morphology, channel behavior and flood hazards. Journal of Geophysical Research: Earth Surface, 2022, 127(2): e2021JF006371. DOI: 10.1029/2021JF006371.

[81]
Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update. Landslides, 2014, 11: 167-194.

[82]
Wilford D J, Sakals M E, Innes J L, et al. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 2004, 1(1): 61-66.

[83]
Pierson T C. Hyperconcentrated flow:Transitional process between water flow and debris flow//Jakob M, Hungr O. Debris-flow Hazards and Related Phenomena. Berlin, Heidelberg: Springer, 2005: 159-202.

[84]
Blair T C, McPherson J G. Alluvial fan processes and forms// Abrahams A D, Parsons A J. Geomorphology of Desert Environments. Dordrecht: Springer, 1994: 354-402.

[85]
Vincent L. The importance of secondary processes on alluvial fan morphology, channel behaviour, and flood hazards[D]. University of British Columbia, 2020. DOI: 10.14288/1.0395354.

[86]
Iverson R M. The physics of debris flows. Reviews of Geophysics, 1997, 35(3): 245-296.

[87]
Jakob M, McDougall S, Weatherly H, et al. Debris-flow simulations on Cheekye river, British Columbia. Landslides, 2013, 10: 685-699.

[88]
Takahashi T. Debris Flow:Mechanics, Prediction and Countermeasures. London: CRC Press, 2014.

[89]
de Haas T, Ventra D, Carbonneau P E, et al. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology, 2014, 217: 165-181.

[90]
Mather A E, Hartley A. Flow events on a hyper-arid alluvial fan: Quebrada Tambores, Salar de Atacama, northern Chile. Geological Society, London, Special Publications, 2005, 251(1): 9-24.

[91]
Sheets B A, Paola C, Kelberer J M. Creation and preservation of channel-form sand bodies in an experimental alluvial system//Nichols G, Williams E, Paola C. Sedimentary processes, environments and basins: A tribute to Peter Friend. International Association of Sedimentologists, 2007: 555-567.

[92]
Bryant M, Falk P, Paola C. Experimental study of avulsion frequency and rate of deposition. Geology, 1995, 23(4): 365. DOI: 10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;2.

[93]
Straub K M, Paola C, Mohrig D, et al. Compensational stacking of channelized sedimentary deposits. Journal of Sedimentary Research, 2009, 79(9): 673-688.

[94]
Slingerland R, Smith N D. River avulsions and their deposits. Annual Review of Earth and Planetary Science, 2004, 32: 257-285.

[95]
Aalto R, Lauer J W, Dietrich W E. Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadal to centennial timescales. Journal of Geophysical Research: Earth Surface, 2008, 113: F01S04. DOI: 10.1029/2006JF000627.

[96]
Mohrig D, Heller P L, Paola C, et al. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin, 2000, 112(12): 1787. DOI: 10.1130/0016-7606(2000)112<1787:IAPFAA>2.0.CO;2.

[97]
Kleinhans M G, Ferguson R I, Lane S N, et al. Splitting rivers at their seams: Bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38(1): 47-61.

[98]
Jerolmack D J, Mohrig D. Conditions for branching in depositional rivers. Geology, 2007, 35(5): 463. DOI: 10.1130/G23308A.1.

[99]
Carling P A, Gupta N, Atkinson P M, et al. Criticality in the planform behavior of the Ganges River meanders. Geology, 2016, 44(10): 859-862.

[100]
Edmonds D A, Hoyal D C J D, Sheets B A, et al. Predicting delta avulsions: Implications for coastal wetland restoration. Geology, 2009, 37(8): 759-762.

[101]
Hoyal D C J D, Sheets B A. Morphodynamic evolution of experimental cohesive deltas. Journal of Geophysical Research: Earth Surface, 2009, 114: F02009. DOI: 10.29/2007JF000882.

[102]
Reitz M D, Jerolmack D J, Swenson J B. Flooding and flow path selection on alluvial fans and deltas. Geophysical Research Letters, 2010, 37(6): L06401. DOI: 10.1029/2009GL041985.

[103]
Aslan A, Autin W J, Blum M D. Causes of river avulsion: Insights from the late Holocene avulsion history of the Mississippi River, USA. Journal of Sedimentary Research, 2005, 75(4): 650-664.

[104]
Leeder M R. A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. Fluvial Sedimentology, 1977, 5: 587-596.

[105]
Allen J R L. Studies in fluviatile sedimentation: An exploratory quantitative model for the architecture of avulsion-controlled alluvial suites. Sedimentary Geology, 1978, 21(2): 129-147.

[106]
de Haas T, Kruijt A, Densmore A L. Effects of debris-flow magnitude-frequency distribution on avulsions and fan development. Earth Surface Processes and Landforms, 2018, 43(13): 2779-2793.

[107]
Leenman A, Eaton B. Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data. Earth Surface Processes and Landforms, 2021, 46(6): 1111-1127.

DOI

[108]
Pederson C A, Santi P M, Pyles D R. Relating the compensational stacking of debris-flow fans to characteristics of their underlying stratigraphy: Implications for geologic hazard assessment and mitigation. Geomorphology, 2015, 248: 47-56.

[109]
Schaefer L N, Santi P M, Duron T C. Debris flow behavior during the September 2013 rainstorm event in the Colorado Front Range, USA. Landslides, 2021, 18: 1585-1595.

[110]
de Haas T, Densmore A L, Stoffel M, et al. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth-Science Reviews, 2018, 177: 53-75.

[111]
Ashworth P J, Best J L, Jones M. Relationship between sediment supply and avulsion frequency in braided rivers. Geology, 2004, 32(1): 21. DOI: 10.1130/G19919.1.

[112]
de Haas T, Densmore A L, den Hond T, et al. Fan-surface evidence for debris-flow avulsion controls and probabilities, Saline valley, California. Journal of Geophysical Research: Earth Surface, 2019, 124(5): 1118-1138.

[113]
Zubrycky S, Mitchell A, McDougall S, et al. Exploring new methods to analyse spatial impact distributions on debris-flow fans using data from south-western British Columbia. Earth Surface Processes and Landforms, 2021, 46(12): 2395-2413.

DOI

[114]
Hou W P, Yu G A. Debris-flow fan development and geomorphic effects in alpine canyons under a changing climate. Earth Surface Processes and Landforms, 2023, 48: 3330-3346.

[115]
Tichavský R, Fabiánová A, Koutroulis A, et al. Recent debris-flow activity on the 1913 Tsivlos landslide body (Northern Peloponnese; Greece). Catena, 2023, 231: 107318. DOI: 10.1016/j.catena.2023.107318.

[116]
Fuller I C, Marden M. Rapid channel response to variability in sediment supply: Cutting and filling of the Tarndale Fan, Waipaoa catchment, New Zealand. Marine Geology, 2010, 270(1-4): 45-54.

[117]
Simpson G, Castelltort S. Model shows that rivers transmit high-frequency climate cycles to the sedimentary record. Geology, 2012, 40(12): 1131-1134.

[118]
Leenman A, Tunnicliffe J. Tributary-junction fans as buffers in the sediment cascade: A multi-decadal study. Earth Surface Processes and Landforms, 2020, 45: 265-279.

DOI

[119]
Savi S, Tofelde S, Wickert A D, et al. Interactions between main channels and tributary alluvial fans: Channel adjustments and sediment-signal propagation. Earth Surface Dynamics, 2020, 8(2): 303-322.

[120]
Rice S P, Church M. Longitudinal profiles in simple alluvial systems. Water Resources Research, 2001, 37(2): 417-426.

[121]
Ferguson R, Hoey T. Effects of tributaries on main-channel geomorphology//Rice S P, Roy A G, Rhoads B L. River Confluences, Tributaries and the Fluvial Network. Chichester: John Wiley & Sons, 2008: 183-208.

[122]
Rice S P, Kiffney P, Greene C, et al. The ecological importance of tributaries and confluences//Rice S P, Roy A G, Rhoads B L. River Confluences, Tributaries and the Fluvial Network. Chichester: John Wiley & Sons, Ltd, 2008: 209-242.

[123]
Grimaud J L, Paola C, Ellis C. Competition between uplift and transverse sedimentation in an experimental delta. Journal of Geophysical Research: Earth Surface, 2017, 122(7): 1339-1354.

[124]
Hou Weipeng, Yu Guoan, Yue Pengsheng. Development and geomorphic characteristics of a typical debris flow fan in alpine valley: A case study of the Tianmo gully in the Parlung Tsangpo basin, southeast Xizang, China. Mountain Research, 2023, 41(4): 532-544.

[ 侯伟鹏, 余国安, 岳蓬胜. 典型高山峡谷泥石流堆积扇发育过程及特征: 以藏东南帕隆藏布流域天摩沟为例. 山地学报, 2023, 41(4): 532-544.]

[125]
Ferguson R I, Cudden J R, Hoey T B, et al. River system discontinuities due to lateral inputs: Generic styles and controls. Earth Surface Processes and Landforms, 2006, 31(9): 1149-1166.

[126]
Cohen T J, Brierley G J. Channel instability in a forested catchment: A case study from Jones Creek, East Gippsland, Australia. Geomorphology, 2000, 32(1/2): 109-128.

[127]
Leeder M R, Mack G H. Lateral erosion (toe-cutting) of alluvial fans by axial rivers: Implications for basin analysis and architecture. Journal of the Geological Society, 2001, 158(6): 885-893.

[128]
Larson P H, Dorn R I, Faulkner D J, et al. Toe-cut terraces: A review and proposed criteria to differentiate from traditional fluvial terraces. Progress in Physical Geography, 2015, 39(4): 417-439.

[129]
Giles P T, Whitehouse B M, Karymbalis E. Interactions between alluvial fans and axial rivers in Yukon, Canada and Alaska, USA. Geological Society, London, Special Publications, 2018, 440(1): 23-43.

[130]
Schumm S A, Parker R S. Implications of complex response of drainage systems for Quaternary alluvial stratigraphy. Nature Physical Science, 1973, 243(128): 99-100.

[131]
Fryirs K A, Brierley G J, Preston N J, et al. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 2007, 70(1): 49-67.

[132]
Fuller I C, Marden M. Slope-channel coupling in steepland terrain: A field-based conceptual model from the Tarndale gully and fan, Waipaoa catchment, New Zealand. Geomorphology, 2011, 128(3/4): 105-115.

[133]
Cui Peng, He Yiping, Chen Jie. Debris flow sediment transportation and its effects on rivers in mountain area. Mountain Research, 2006, 24(5): 539-549.

[ 崔鹏, 何易平, 陈杰. 泥石流输沙及其对山区河道的影响. 山地学报, 2006, 24(5): 539-549.]

[134]
Stokes M, Mather A E. Controls on modern tributary-junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco. Geomorphology, 2015, 248: 344-362.

[135]
St. Pierre Ostrander T, Holzner J, Mazzorana B, et al. Confluence morphodynamics in mountain rivers in response to intense tributary bedload input. Earth Surface Processes and Landforms, 2023, 48(12): 2277-2298.

[136]
Chen Chunguang, Yao Lingkan, Liu Cuirong, et al. Study on conditions of river-blocking due to debris flow. Journal of Hydraulic Engineering, 2013, 44(6): 648-656.

[ 陈春光, 姚令侃, 刘翠容, 等. 泥石流堵河条件的研究. 水利学报, 2013, 44(6): 648-656.]

[137]
Lyu Liqun, Wang Zhaoyin, Xu Mengzhen, et al. Geomorphic characters of debris flow fans along Nu River and the river blocking mechanisms. Journal of Hydraulic Engineering, 2016, 47(10): 1245-1252.

[ 吕立群, 王兆印, 徐梦珍, 等. 怒江泥石流扇地貌特征与扇体堵江机理研究. 水利学报, 2016, 47(10): 1245-1252.]

[138]
Yu G A, Lu J Y, Lyu L Q, et al. Mass flows and river response in rapid uplifting regions: A case of lower Yarlung Tsangpo basin, southeast Xizang, China. International Journal of Sediment Research, 2020, 35(6): 609-620.

[139]
Lyu L Q, Xu M Z, Wang Z Y, et al. Impact of densely distributed debris flow dams on river morphology of the Grand Canyon of the Nu River (upper Salween River) at the east margin of the Tibetan Plateau. Landslides, 2021, 18: 979-991.

[140]
Yu Guoan, Lu Jianying, Li Zhiwei, et al. Geomorphic effects of debris flows in high mountain areas of the Parlung Zangbo basin, southeast Xizang under the influence of climate change. Acta Geographica Sinica, 2022, 77(3): 619-634.

DOI

[ 余国安, 鲁建莹, 李志威, 等. 气候变化影响下藏东南帕隆藏布流域高山区泥石流的地貌效应. 地理学报, 2022, 77(3): 619-634.]

DOI

[141]
Decaulne A, Saemundsson T. Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology, 2006, 80(1/2): 80-93.

[142]
Breien H, de Blasio F V, Elverhøi A, et al. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides, 2008, 5(3): 271-280.

[143]
Cavalli M, Marchi L. Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Sciences, 2008, 8(2): 323-333.

[144]
Tang Chuan, Zhu Jing, Duan Jinfan, et al. Research on the deposition fans in Xiaojiang watershed, Yunnan province. Mountain Research, 1991, 9(3): 179-184.

[ 唐川, 朱静, 段金凡, 等. 云南小江流域泥石流堆积扇研究. 山地研究, 1991, 9(3): 179-184.]

[145]
Yin Senlin, Liu Zhongbao, Chen Yanhui, et al. Research progress and sedimentation experiment simulation about alluvial fan: A case study on alluvial fan controlled by debris flow and braided river. Acta Sedimentologica Sinica, 2017, 35(1): 10-23.

[ 印森林, 刘忠保, 陈燕辉, 等. 冲积扇研究现状及沉积模拟实验: 以碎屑流和辫状河共同控制的冲积扇为例. 沉积学报, 2017, 35(1): 10-23.]

[146]
Wasklewicz T, Scheinert C. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA. Geomorphology, 2016, 252: 51-65.

[147]
Bartz M, Walk J, Binnie S A, et al. Late Pleistocene alluvial fan evolution along the coastal Atacama Desert (N Chile). Global and Planetary Change, 2020, 190: 103091. DOI: 10.1016/j.gloplacha.2019.103091.

[148]
Baselt I, de Oliveira G Q, Fischer J T, et al. Deposition morphology in large-scale laboratory stony debris flows. Geomorphology, 2022, 396: 107992. DOI: 10.1016/j.geomorph.2021.107992.

[149]
Chen T Y K, Hung C Y, Mullenbach J, et al. Influence of fine particle content in debris flows on alluvial fan morphology. Scientific Reports, 2022, 12: 21730. DOI: 10.1038/s41598-022-24397-x.

[150]
Tsunetaka H, Hotta N, Sakai Y, et al. Effect of debris-flow sediment grain-size distribution on fan morphology. Earth Surface Dynamics, 2022, 10: 775-796.

[151]
Kesel R H, Lowe D R. Geomorphology and sedimentology of the Toro Amarillo alluvial fan in a humid tropical environment, Costa Rica. Geografiska Annaler: Series A, Physical Geography, 1987, 69(1): 85-99.

[152]
Kochel R C. Humid fans of the Appalachian Mountains// Rachocki A H, Church M. Alluvial Fans:A Field Approach. New York: Wiley, 1990: 109-129.

Outlines

/