Atmospheric dust deposition history over the past 150 a recorded by mountain peatlands in northeast China
Received date: 2019-12-31
Request revised date: 2021-04-20
Online published: 2021-11-25
Supported by
National Natural Science Foundation of China(41971113)
Copyright
In order to investigate the past 150-year history of atmospheric dust deposition and its effect on the Asian monsoon zone and marginal zone, ombrotrophic peats from the Changbai Mountians were used to reconstruct the past history of atmospheric dust deposition based on the grain-size, lithogenic elements and 210Pb and137Cs dating. The dust deposition sequences were compared with those from Motianling peat of Great Hinggan Mountains. The mountain peat ash in northeast China was mainly composed of clay and silt. The medium grain size and the lithogenic elemental fingerprints also preliminarily revealed that the mineral dust in the mountain peat of northeast China were mainly from the soil dust in Mongolian and northern China desert and sand land areas. The atmospheric soil dust deposition flux increased gradually from the 1800s to the 1960s, which was consistent with the increase of human activities such as regional modernization, industrialization and aggressive wars. There was a decreasing trend in the atmospheric soil dust deposition during the past 60 years in northeast China, as shown by the mountain peat records, which is in good agreement with the monitoring data of regional natural dust storms. The background baseline of the long-distance atmospheric soil dust deposition flux in northeast China is calculated as 5.2±2.6 g m-2 a-1. The mean atmospheric soil dust flux was 5-38 g m-2 a-1 in the Changbai Mountain area, and that value was 14-68 g m-2 a-1 in the Great Hinggan Mountain area. The atmospheric dust deposition rates derived from the Changbai Mountain peat were smaller than those derived from the Great Hinggan Mountian peat. This suggested a decreasing atmospheric dust deposition with the increasing distance from the dust source area, and thus the influence extent of atmospheric dust deposition on the western side was higher than that on the eastern side of northeast China.
BAO Kunshan , YANG Ting , XIAO Xiang , JIA Lin , WANG Guoping , SHEN Ji . Atmospheric dust deposition history over the past 150 a recorded by mountain peatlands in northeast China[J]. Acta Geographica Sinica, 2021 , 76(9) : 2283 -2296 . DOI: 10.11821/dlxb202109017
图5 长白山地泥炭记录的大气尘降通量历史变化及其与大兴安岭摩天岭泥炭记录比较注:大兴安岭摩天岭泥炭记录数据来自文献[14];绿色部分为气象记录的中国北方近50年沙尘暴减少时期[40];图中I、II、III分别表示大气土壤尘降通量缓慢增长阶段、明显减小阶段和潜在增加阶段。 Fig. 5 Comparisons of accumulation rate of atmospheric soil dust calculated from the Changbai Mountain peatlands and the Motianling peat records in Great Hinggan Mountains |
表1 东北泥炭中成岩元素与中国北方干旱半干旱地区表层土壤和气溶胶中元素含量比较Tab. 1 Comparison of lithosphere metals in peat taken from northeast China Mountains, surface soils and dust aerosols of arid and semi-arid areas of northern China |
样品 | 区域 | 铝(%) | 钙(%) | 铁(%) | 锰(mg g-1) | 钒(mg kg-1) | 钛(mg g-1) | 数据来源 |
---|---|---|---|---|---|---|---|---|
泥炭 | 长白山地区 | 0.5~2.3 | 1.2 | 0.2~0.9 | 0~0.2 | 0~33.9 | 0.1~1.7 | [27, 29] |
泥炭 | 大兴安岭 | 2.9~5.9 | 4.1~6.2 | 2.4~3.8 | 1.0~2.3 | 87.7~123.9 | 1.6~4.3 | [14] |
表土 | 塔克拉玛干沙漠 | 5.0~5.3 | 6.3~6.6 | 2.1~2.3 | 0.5 | - | 0.3 | [58] |
表土 | 戈壁沙漠 | 6.0 | 2.8 | 3.0 | 0.6 | - | 0.4 | [58] |
表土 | 黄土区域 | 5.3~6.0 | 4.8~5.1 | 2.5~2.9 | 0.5~0.7 | - | 0.3 | [58] |
粉尘气溶胶 | 巴丹吉林沙漠 | 7.0 | 7.0 | 4.0 | 2.0 | - | 0.5 | [47] |
粉尘气溶胶 | 北京 | 8.6 | - | 2.4 | 1.0 | 95.0 | - | [59] |
粉尘气溶胶 | 兰州 | 4.6 | 5.13 | 2.6 | 0.7 | 99.0 | 3.4 | [60] |
注:“-”表示无数据。 |
表2 全球不同区域大气尘降平均通量比较Tab. 2 Comparison of annual aeolian dust deposition rate in a worldwide context |
区域 | 采样点 | 研究方法 | 年份 | 大气尘降通量(g m-2 a-1) | 数据来源 |
---|---|---|---|---|---|
中国 | 长白山地区 | 泥炭档案 | 1800—1970s | 5.2~37.8 | 本研究 |
中国 | 大兴安岭 | 泥炭档案 | 1860—2009 | 13.4~68.1 | [14] |
中国 | 科尔沁奈曼 | 直接监测 | 2001—2002 | 257.3 | [52] |
中国 | 渤海 | 直接监测 | 1987—1992 | 26.4 | [53] |
韩国 | 釜山 | 直接监测 | 2002 | 10~77 | [54] |
日本 | 札幌市 | 直接监测 | 1994—1995 | 5.2 | [55] |
阿根廷 | 潘帕斯草原 | 直接监测 | 1993—1995 | 40~80 | [51] |
西亚 | 死海 | 直接监测 | 1997—1999 | 25.5~60.5 | [56] |
澳大利亚 | 澳大利亚东部 | 气象资料 | 1957—1984 | 31.4~43.8 | [57] |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[张俊辉, 夏敦胜, 张英, 等. 中国泥炭记录末次冰消期以来古气候研究进展. 地球科学进展, 2012, 27(1): 42-51.]
|
[16] |
[鲍锟山, 赵红梅, 于晓菲, 等. 大气环境变化的泥炭地质档案. 地质论评, 2011, 57(2): 234-242.]
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
[高由禧, 徐淑英, 郭其蕴, 等. 东亚季风的若干问题. 北京: 科学出版社, 1962.]
|
[26] |
[张彦, 史彩奎, 王健, 等. 长白山圆池泥炭沼泽演变及环境信息记录. 湿地科学, 2012, 10(3): 271-277.]
|
[27] |
[贾琳, 王国平, 刘景双. 长白山锦北雨养泥炭剖面元素富集规律分析. 湿地科学, 2006, 4(3): 187-192.]
|
[28] |
[贾琳, 王国平, 刘景双. 长白山圆池泥炭常量和微量元素分布特征及其环境意义. 山地学报, 2006, 24(6): 662-666.]
|
[29] |
|
[30] |
|
[31] |
|
[32] |
[于学峰, 周卫健, 刘晓清, 等. 青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义. 沉积学报, 2006, 24(6): 864-869.]
|
[33] |
|
[34] |
|
[35] |
|
[36] |
[鲍锟山, 王国平, 赵红梅, 等. 泥炭沉积与气候变化的泥炭记录. 地层学杂志 2012, 36(1): 97-108.]
|
[37] |
|
[38] |
|
[39] |
[杨东贞, 周怀刚, 张忠华, 中国区域空气污染本底站的降水化学特征. 应用气象学报, 2002. 13(4): 430-439.]
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
[何葵, 谢远云, 康春国, 等. 哈尔滨沙尘沉降物的粒度组成及其源地分析. 中国农学通报, 2009, 25(11): 200-205.]
|
[45] |
|
[46] |
[张小曳, 张光宇, 安芷生, 等. 中国源区粉尘的元素示踪. 中国科学(D辑): 地球科学, 1996, 26(5): 423-430.]
|
[47] |
|
[48] |
|
[49] |
|
[50] |
[穆兴民, 高鹏, 王双银, 等, 东北3省人类活动与水土流失关系的演进. 中国水土保持科学, 2009. 7(5): 37-42.]
|
[51] |
|
[52] |
[李晋昌, 董治宝, 钱广强, 等. 中国北方不同区域典型站点降尘特性的对比. 中国沙漠, 2010, 30(6): 1269-1277.]
|
[53] |
[刘毅, 周明煜. 中国东部海域大气气溶胶入海通量的研究. 海洋学报, 1999, 21(5): 38-45.]
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
[李玉霖, 拓万全, 崔建垣. 兰州市沙尘和非沙尘天气沉降物的化学特性比较. 中国沙漠, 2006, 26(4): 648-651.]
|
/
〈 |
|
〉 |