Climate Change and Land Surface Processes

Geomorphology-oriented digital terrain analysis: Progress and perspectives

  • XIONG Liyang , 1, 2, 3 ,
  • TANG Guoan , 1, 2, 3 ,
  • YANG Xin 1, 2, 3 ,
  • LI Fayuan 1, 2, 3
Expand
  • 1. Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China
  • 2. School of Geography, Nanjing Normal University, Nanjing 210023, China
  • 3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

Received date: 2020-07-09

  Request revised date: 2021-03-09

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(41930102)

National Natural Science Foundation of China(41971333)

National Natural Science Foundation of China(41771415)

Copyright

Copyright reserved © 2020

Abstract

Digital terrain analysis (DTA) is one of the most important contents of research on geographical information science (GIS). However, when a digital elevation model (DEM) is used, many problems arise in DTA geomorphological studies. For instance, current DTA research focused on morphology, phenomenon and modern surface rather than the mechanism, process and underlying terrain. Thus, current DTA research needs to be transformed from the study of landform morphology to the study of landform process and mechanism. On this basis, this study summarised the current research status of geomorphology-oriented DTA and systematically reviewed and analysed the research on geomorphology, terrain modelling, terrain derivative calculation and other terrain analysis methods. The investigated studies showed that with the help of DEM data, DTA research has the advantage of carrying out geomorphology studies from the perspective of surface morphology. However, DTA research has inherent defects in data expression and analysis patterns. Thus, breakthroughs must be achieved in basic theories and key technologies to transform DTA research from phenomenon to mechanism, from morphology to process and from terrain to landform. At present, the development of research on earth science has reached a critical stage wherein DTA research should focus on the discussion of geomorphology. This study proposes several prospects of geomorphology-oriented DTA from the aspects of value-added DEM, terrain derivatives and their spatial relations and macro-terrain analysis. The study of DTA by using DEM is at a critical period along with the issue on whether the current GIS technology can truly support the development of geography. The research idea of geomorphology-oriented DTA is expected to be an important area of exploration and practice in GIS.

Cite this article

XIONG Liyang , TANG Guoan , YANG Xin , LI Fayuan . Geomorphology-oriented digital terrain analysis: Progress and perspectives[J]. Acta Geographica Sinica, 2021 , 76(3) : 595 -611 . DOI: 10.11821/dlxb202103008

1 引言

地貌在相当程度上制约着地表物质和热量的区域再分配,影响着地表景观与生态系统的变迁和发展,也在一定程度上控制着人类活动的方式和规模[1,2,3,4,5]。地貌学作为研究地表形态起伏、成因机理、分布格局及其演变规律的学科,其学科属性及研究领域决定了它在地理学中所具有的极其重要的根基地位。20世纪70年代以来,现代地理信息科学理论与技术的发展,给传统的地理学分析方法带来了一场涅槃式的重大变革[6,7,8,9,10,11,12,13]
在地貌学研究领域,随着地貌形态的基本表达方法从传统的等高线转变为数字高程模型(Digital Elevation Model, DEM),其基本表达模式发生了革命性的变化。基于DEM的数字地形分析(Digital Terrain Analysis, DTA)又通过GIS平台完成了各种地形因子、地形特征要素的高效提取与深度分析,传统的地貌学研究方法也随之发生了根本的转型。集中体现在:在认知视野上,不同空间尺度的DEM数据既可以从宏观全局视野审视区域地貌格局,也可以从微观局部视角探寻微地貌形态的点点滴滴,还可以从正面、侧面多视点看层峦山叠的千姿百态,进而实现宏观和微观深度耦合、平面和侧面交相呼应的多层次认知地貌学;在分析维度上,基于DEM数据的数字地形分析方法已经可以对各类坡面地形因子、特征地形要素进行自动提取与分析,实现了对地貌形态在属性维与特征维的多维度分析,进而可以为进行深层次的地学知识发现奠定新基础和开辟新道路;在研究范式上,地貌学研究从传统的定性描述、半定量表达的研究范式逐步走向可定性、可定量和可定位的三维一体式研究范式,这种研究范式的转变实现了对地貌形态的科学认知、地貌特征的量化表达、以及地貌过程建模模拟的突破与提升。
目前,基于DEM的数字地形分析已经初步形成了自身特有的理论、方法体系与应用模式,成为国际GIS学术界,以及地貌学和测绘学界具有相当影响力的、多学科融合的新兴学科方向。但是,研究应该要清醒地认识到:现有数字地形分析理论与方法研究虽然取得一定研究进展,但摆在研究者面前的问题仍然显而易见。特别是,所取得的成绩主要集中在地貌形态建模及其属性特征的表达上,这种建模与表达为认知地貌研究奠定了重要基础。然而,地貌的基本要素包含形态、成因、物质、过程和年龄等属性,且地貌是地球表面形形色色的各种空间实体,它并不是抽象的几何对象组合,而是各种空间属性及关系的地理综合体。该综合体具有确定的地质构造和物质组成,并受到地球内外动力的不断作用和影响[14,15,16,17,18,19,20,21,22]。所以,不清楚组成地貌的岩石成分和性质,便不可能理解地貌;不了解促进地貌发展的生物圈、水圈和大气圈的物理及化学状态不断变化的过程,也不可能研究地貌。可见,面向地貌学本源的数字地形分析,需要研究地球表层各种形体特点,需要了解形成这些形体的内外动力作用及过程,需要考虑组成这些形体的物质组成及其理化性质和动力关系,需要认真学习传统地貌学的思想方法论,尊重与传承地貌学研究业已形成的科学传统与研究范式精华。唯有此,才能真正使数字地形分析从“形态”走向“过程”,从“地形”走向“地貌”。使得数字地形分析不至于成为偏离地貌学科学本源的、华而不实的数字游戏,不至于偏离正确的发展方向。

2 面向地貌学本源的数字地形分析的相关研究进展

2.1 地貌学本源认识与地貌学研究

地貌学本源决定了地貌学研究的内核与宏观方向,是地貌学认识论、方法论的核心与基础。从地貌学的发展历程来看,那些不断扩展和创新的地貌学理论模型和分析方法,一定程度上反映了人们对地貌学本源认识的发展脉络,并逐步形成了完备的地貌学认识论体系,为地貌学研究提供了理论基础[23,24]。地貌学的本源研究及其理论构建最早可以追溯到希罗多德所处的古希腊时期和沈括所在的北宋时期[25,26],但地貌这一术语由德国地理学者劳曼于1858年首次提出便得到了广泛使用[27,28]。此后,在相当一段时间内,彭克和戴维斯的地貌演化理论在思想碰撞与理论交锋进程中相互发展,并各自代表了一定时期内主流的地貌成因研究理论及地貌学本源关注点[29,30]。尽管他们的学术观点不同,但都可以归结为描述和演绎式的地貌研究。此外,在19世纪期间,也有学者展开了通过气候背景解释大尺度地貌形成的研究,预示着气候地貌学的兴起[31,32]。以上关于地貌认识的理论和模型成果,代表了早期学者对地貌学本源的认识和解释方式。20世纪以来,不同学者开始强调内外营力作用下的动力地貌学研究[33,34,35];这些研究逐步重视内动力的控制作用,并依据内外动力相互作用而展开地貌学本源研究,从而形成了构造地貌学、岩石地貌学等门类[36,37,38],取得了诸多的研究进展。以上研究极大地丰富和完善了人们对地貌学本源的认识,对地貌形成的内外营力、地质构造、物质组成等因素的认知取得了突破性的研究进展,并在一定程度上实现了从机理上定性回答地貌形态特征与地球深层板块活动的联动,可以说是地貌学研究史上的一场革命[39,40]。这一时期的地貌学发展为地貌学本源认识提供了丰富的知识积累,形成了对地貌本体较为完备的认识,达到了对客观存在的地貌形态进行真实地成因、机理及格局的描述,以及关于地表形态的科学性的解释目的。
可以看出,地貌学家对地貌学本源问题的讨论以及对地貌本体的认识从来都未停止过,并经历了从浅入深、由片面到完整、由单一向系统的认识过程,并在此基础上形成了诸如侵蚀循环、气候地貌、动力学地貌等不同研究范式。但是,随着现代对地观测技术与数字地形分析方法的应用与发展,给传统地貌学研究带来了一场根本性的变化。这种变化反过来又对数字地形分析提出新的要求。据此,研究需要基于数字地形分析视角,深入审视地貌学本源问题,并由此进一步升级现有数字地形分析方法,形成新的地理信息科学视角下的地貌学研究范式。

2.2 地貌形态建模研究

地貌形态是内外营力交互作用于地表物质并在一定时间条件下的外在表现,它是地理环境中的一个重要因素。长期以来,人们不断尝试采用各种方法描述、表达地貌形态,以满足实际应用的需求。研究早期,地貌形态主要以象形绘图方式对地表形态进行简单的描述和归纳[41]。随着数学、物理学、计算机科学和地理信息科学的发展,地貌形态的建模与可视化表达研究也逐渐兴起,诸多学者先后提出地形晕渲图、地貌写景图、地形素描图、等高线地形图等方法对地貌形态进行建模与可视化表达。
当前,DEM数据通过对地表高程的连续采样与建模,实现了对地貌形态的数字化模拟,使得DEM已经是当前最广泛采用的地貌形态建模模型。在DEM数据模型研究中,王家耀等系统总结了DEM数据模型包括不规则三角网DEM、规则格网DEM、等高线DEM、断面线DEM、离散点DEM和混合式DEM等6种类型[42]。龚健雅等诸多国内外学者提出了混合数据模型、多层次细节模型等地貌形态建模方法[43,44,45]。在DEM构建方法研究中,不同学者从传统高程内插、地图代数模拟、高精度数学曲面建模、以及特征嵌入式高保真DEM构建等[46,47,48,49,50]方面实现了对DEM数据构建。此外,也有学者研究了二元样条函数、Coons曲面、及多层曲面叠加内插等局部地形的插值方法[51,52]。这些成果都在相当程度上提高了地貌形态建模与表达的保真性与实用性。
现代遥感对地观测技术的飞速发展,高分辨率遥感影像立体测量、合成孔径雷达干涉测量、无人机航测、激光雷达、倾斜摄影等[53,54,55,56,57,58,59,60]新技术的出现极大地促进了DEM数据采集方法的发展。海量、高精度DEM点云数据能够便捷且快速地获取,为多时相、多层次、多尺度的地貌形态建模与表达奠定了坚实的数据基础。
可以看出,DEM实现了对地貌形态的几何信息精确表达,不仅能逼真地表达地球表面,增进人们对地貌形态的认识和理解,同时还能帮助人们进行各种量算、分析和可视化操作。但是,不可否认,当前DEM数据仅包含位置和高程信息,仅能简单表达地貌形态的表面信息,难以揭示地貌形态的内部结构和物质组成,也就难以科学把握地貌的发育演变过程。再者,地貌过程是一个物质成因交织、形态机理耦合的非线性自组织动态演变系统,单一的形态学数理模型往往难以科学表达与模拟地貌过程,现有单一高程属性的DEM数据严重地制约了对地貌学本源问题的深入研究。因此,研究亟须发展新的、包含多种地貌学本源信息的、多属性DEM增值模型,为服务于地貌学本源研究的数字地形分析奠定基础。

2.3 地形因子提取研究

基于DEM的地形因子的提取一直是DTA研究的核心和基础内容,也是从不同视角认知地貌形态特征[61,62,63,64]、建模地貌发育过程[65,66,67,68,69]、理解地貌成因机制[70,71,72]的重要研究要点。研究至今,已有超过100余种地形因子为学者所提出[73],形成了日臻完善的数字地形分析地形因子体系。在已提出地形因子研究当中,它们的提取方法、算法稳定性、算法性能、功能应用及其分类是诸多学者研究的热点[74,75,76]
地形因子的提取方法可以总结为对象型地形因子提取方法和场型地形因子提取方法[73]。其中,场型地形因子的提取方法主要是基于格网数字高程模型,在给定的分析半径或窗口内,计算出高程变化的相关特征变量[77],进而得出不同的一阶或者二阶地形因子[78],如地面坡度、坡向、SOS、SOA、地表曲率、汇流累积流量、汇流方向、地形粗糙度、地形湿度指数等[79,80,81,82,83,84,85,86,87,88]。而对象型地形因子则不同于场型地形因子。对象型地形因子一般是面向具体地形对象的因子。据此,众多研究人员依据特定的分析对象和目标,提出了对应的对象型地形因子。如针对河流特征的长度、等级、密度等[89,90];针对流域特征的流域圆度和流域面积等[91,92,93];针对沟谷特征的沟谷密度、沟沿线逼近程度和沟头点密度等[94,95]。在地形因子提取算法的稳定性和计算性能中,随着现有研究的不断深入,地形因子计算效率、稳定性和精度也在不断地得到提高。当前研究中,地形因子提取方法的不确定性特征[96,97,98]、适宜分析半径和窗口[99,100,101,102]、地形对象尺度特征[103,104]等科学问题已经得到了深入的分析与挖掘;此外,高性能地学计算也逐步成为提升地形因子计算效率的又一解决手段。相关研究成果显示,对比地形因子的传统串行计算算法,并行化、集群化地形因子计算方法的加速比可达10倍或者以上[105,106,107,108]。最后,针对学者们已经提出的100余种地形因子,也有研究尝试对它们进行科学的分类。这种分类显著地提升了对地形特征的科学理解与认知,也在相当程度上能够促进传统地貌学研究走向定量化的目标。当前,地形因子的数目和类型繁多,提出背景也各有侧重。已有学者从地形因子的应用目标[109]、复杂特征[110]、计算性能[111]、应用领域和不确定性特征[112]、空间关系[87]、表达特点[113]等方面对地形因子进行了系统的梳理和整合。另外,还有研究基于不同的研究对象和目标,初步地提出了相应的基于DEM的地形因子分类体系[94, 112]
尽管前人提出了诸多分类方法或围绕某个对象的因子体系,但缺乏从地貌学本源视角展开地形因子表达机制和因子间关联性的研究。地形因子由其地貌形态所计算得到,而地貌形态则是诸多地球内外动力及时间作用的结果。此外,地貌形态具有其自身蕴含的地形因子特征与结构。同时,相同地貌区域,地形因子间的相互组合及其结构在相当程度上映射着该样区地貌的发育机制。因此,挖掘不同地貌形态的地形因子组合特征和表达方式、地形因子间的关联关系与分异特征,对于深入探索深层次的地貌特征与过程,揭示地貌发育演化规律与驱动机制具有重要意义。

2.4 其他地形分析方法研究

除地形因子提取方法外,DTA还包含坡谱分析法、要素分析法、纹理分析法、地貌分类与制图等诸多数字地形分析方法[113]。其中,要素是代表地貌形态核心特征的“点—线—面”地形特征要素(如山顶点、山脊线、正负地形)。这些地形特征要素有效地表达与解释不同区域的地貌基本结构与空间格局。近年来,不同学者基于DEM开展了丰富的地形特征要素分析研究,取得了显著地研究成果[114,115,116,117]。此外,还有研究通过特殊的数学模型,将数字高程模型提取的地形特征要素构建成既相互独立,又密切联系的空间有机综合体,为科学地、系统性、完整的地形分析提供借鉴[118]
20世纪以来,陈述彭院士提出了地学信息图谱的研究,为基于图谱的DTA理论与方法研究提供了新的思路[119]。地学信息图谱基于图的表达方法和谱的逻辑性特征,来分析空间中的各种地学现象、过程、机理及其时空分异特征,为基于DTA的传统地貌学研究提供了新的思考。据此,地面坡谱、面积高程积分谱、流域边界谱、地形剖面谱、地形纹理谱等诸多DTA图谱分析法取得了显著地研究成果[120,121,122,123,124]。例如,黄土高原地区内,地貌形态的坡谱特征与地貌类型特征具有一定的映射关系,在一定程度上表达了黄土地貌特征的空间差异性。这些图谱研究使得DTA能够从“形—数—理”的视角揭示地貌形态的空间分异格局。
此外,地貌分类是地貌表达与制图的基础理论研究[125]。当前研究中,地貌分类研究总体采纳形态和成因相结合的原则和方法对其进行科学划分[126]。中国学者也据此做出了突出且重要的研究进展[127,128]。还有一些学者在特殊地貌分类与制图中取得了丰富研究成果,如黄土高原黄土地貌[129,130,131,132,133,134]、风沙地貌[135,136]、岩溶喀斯特地貌[137,138]以及冰川地貌[139,140]等。在DEM数据条件下,众多学者提出了不同的地貌形态自动分类方法[141,142,143,144,145,146]
现阶段,已有的DTA方法可以较为完整地对特定样区的地貌形态进行科学描述及定量分析。然而,由于DEM数据的先天缺陷以及当前DTA理论与方法的不足,已有基于DTA的地貌学研究还难以对地貌的过程、成因、机理进行科学有效的表达与分析,进而使得DTA研究尚不能对地貌发生、发育、发展的进程进行科学、全面的刻画,使得当前针对成因型的地貌自动分类仍然具有一定的挑战。因此,如何利用DTA方法,嵌入可转换的地貌发育机理的专家规则,实现地貌类型的自动分类是地貌学本源研究的一个亟待解决的问题。

3 面向地貌学本源的数字地形分析研究展望

长期以来,基于DTA的地貌学研究集中于地貌形态建模、地形因子提取与分析等方面。在地貌形态建模上,从全球宏观尺度到局部微观尺度,再到侧面精细尺度,现代遥感探测、倾斜摄影、GIS等技术与方法已可实现对地貌形态的多层次感知、多尺度表达与高保真建模,这些基于DEM的地貌形态表达为地貌学本源研究提供了初步的地貌形态特征的外在表现数据基础。在地形因子提取上,从坡度、坡向、坡长、坡形、坡位等坡面地形因子,到反映地表汇流特征的汇流方向、汇流累积、汇水线密度等流域地形因子,再到更注重地理综合特征的面积高程积分、地形湿度指数、地形动力指数等复合地形因子,地形因子的种类不断丰富和多样化;而不同地形因子映射着地貌形态及其过程的不同侧面,在相当程度上丰富了对地貌学本源问题的认知。此外,在地形因子分析上,通过基于邻域窗口或追踪分析的手段,实现了微观层面不同地貌位置的地表物质流与能量流的动态关联,这种关联在相当程度上可以辅助地貌学本源的地表过程模拟(如水文分析中汇流累计量计算即把汇水的“源”和“汇”进行科学计算,以实现水流在地表的动态关联)。
一般而言,任何地貌都是以一定的形态作为外在表现,任何地貌形态都是这种地貌及其发育阶段的一种映射。反过来,任何地貌形态都是内外营力对地表物质作用的结果,这种作用的外在表现就是一定的地貌形态。而这种地貌形态恰好是可以用数字高程模型进行刻画的,所刻画的地貌形态在相当程度上映射了某种物质在内外营力共同作用下,并在一定时间下发展到一定阶段形成的某种结果。可以看出,DEM与DTA具有天然的解决地貌学本源问题的潜力与优势,而当今学界的研究发展态势也到了数字地形分析研究从重视地貌形态走向揭示地貌学本源的关键阶段。据此,研究提出DEM数据模型增值、地形空间关系、以及宏观地形分析的面向地貌学本源的数字地形分析研究展望。

3.1 DEM数据模型增值

传统的基于DEM的DTA更加注重地表形态特征的探讨。但是,地貌学研究的特点表现为形态与机理相结合、静态与动态相结合、空间与时间相结合、定性与定量相结合等特征。从当今DEM数据研究本身来看,地貌形态及其特征表达只是在一定程度上满足了地貌学空间性特征的研究需要。但是,不可否认,由于DEM中缺乏“时间”和“地表物质”等地貌分析中几个主要地貌要素,使得目前数字地形分析方法难以真正实现从形态到地貌过程、机理的分析。例如:地表物质往往既是产生地貌现象的原因,又是地貌作用的结果。人们根据黄土物质的粒度,分析沉积地与物源地之间的距离;根据碎屑物的个体形态与堆积特征,判断是冰川还是泥石流堆积物;根据物质测年的结果,判别物质裸露的年代及地貌效应,等等。但遗憾的是,当前的数字地形分析由于缺失对所对应地面物质属性的有效标定,面向地貌学本源的数字地形分析就失去了重要的分析支撑。因此,研究中迫切需要对DEM数据的组织与模型进行地貌要素增值,即在传统DEM中位置与高程(I、J、H)要素的基础上,有效增加诸如“时间”“物质”“下伏地形”等核心地貌要素,构建新型“增值型DEM”,并构建新型DEM数据模型的DTA理论与方法研究体系(图1)。在新型DEM数据与DTA方法的研究支撑下,研究才可望为从单纯的地表形态分析,拓展到地貌过程与机理分析,实现DEM数字地形分析的方法创新。
图1 面向地貌学本源的DEM增值

Fig. 1 Geomorphology-oriented value-added DEM

3.2 地形因子及其地形空间关系

DTA的核心研究之一是基于地形因子对地貌形态的定量表达。但是,自数字高程模型诞生以来,至今已提出了上百种地形因子。地形因子不同于数学变量,它只有与具体的地学问题相结合,才能反映其内涵与价值。例如,人们正是根据河流两侧不同距离、不同高程的台地,判断不同级别的河流阶地;根据黄土地貌中沟沿线对分水线的逼近距离,分析黄土侵蚀地貌发育的进程;根据群山山顶高度的一致性程度,分析地质历史时期的夷平面;根据风成地貌中新月形沙丘的走向,分析盛行风向;根据黄土现今地形与下伏第三纪原始古地形的相似性,分析地貌的继承性关系等。可见,基于地形因子及要素的空间关系来剖析地貌形态以及成因机理的分析方法,从一开始就是地貌学研究的基本方法。但当前,所提出的上百种地形因子,难以用来表达这种地形空间关系。更为重要的是,目前100多种地形因子实质上仍处于杂乱无章的状态,研究尚没有从地貌学本源问题出发,以科学的原则及依据,对当前的地形因子进行语义界定、功能剖析、归纳演绎、有效补缺、系统整合,形成集科学性、系统性、实用性于一体的地形因子体系(图2)。这个集成创新目标的实现,将为新一代的数字地形分析的出现奠定重要的基础。
图2 面向地貌学本源的地形因子分析

Fig. 2 Geomorphology-oriented terrain derivative analysis

3.3 宏观地形分析

以往的数字地形分析都是以窗口分析为基本的分析方法,这种邻域分析在一定程度上解决了相邻栅格位置间的结构及其过程的模拟与表达。但是,它所存在“近视眼”的视野局限,使得DEM难以真正解决地理学重点需要解决的区域地貌分析与地貌制图难题。内外营力长期对地表物质作用,造就了宏观尺度大地貌区域格局和微观尺度上不同类型的地貌单元。研究中,既需要自下而上式的栅格单元聚类分析并实现地貌单元融合与归纳,也需要对地貌格局进行宏观解读并实现地貌单元自上而下式的分解与演绎。对于具有显著形态或地学属性变异的地貌对象,例如:地形起伏显著变化的黄土沟沿线、汇流方向显著变异的流域边界线等,基于邻域分析的DTA方法尚能有效提取。但是,对于涉及要素更为复杂、更依赖对周边地形空间关系综合分析的地貌,现有分析方法就显得捉襟见肘,甚至无能为力。必须走出栅格的“近视眼”分析束缚,提出新的空间分析理论与方法,实现科学的方法创新。此外,地貌分类与分区制图,往往是地貌学研究成果的有效体现。但是,地貌界线的划定有其相当的复杂性。纵观前人对黄土高原不同黄土地貌区的划定,就是对黄土地貌进行了充分的综合考察与多地形要素系统分析的结果。应当讲,目前海量、多分辨率的DEM数据的存在,以及多种地形因子的高精度自动提取,为开展地貌制图提供了重要的支撑。然而,地理边界问题,本身又是一个极为复杂、极为抽象、极为综合的理论难题,几十年前的地貌科学家们可以面对一张地形图和野外踏勘的感性认识,利用专家经验进行地貌边界的手动标绘。但在GIS时代,研究首先要做的是将这些地貌学家的思想进行科学的提炼,变为GIS可以识别的专家模型。为此,首先要厘清“地貌边界”这个具有地理学根本理论问题的科学内涵及地貌制图的技术需求;在此基础上,需要发展特征要素集分析法、图谱分析法、纹理分析法等一整套全新的地形分析新理论与新方法,最终形成地貌界线、格局与规律三者的有机整体,成为基于新一代DEM数据进行地貌分类与分区研究的重要理论探索与方法实践(图3)。
图3 面向宏观地貌特征的宏观地形分析方法

Fig. 3 Macro-terrain analysis methods for macro-geomorphological characteristics

4 结论与讨论

数字地形分析取得很大进展的今天,构建面向地貌学本源的新一代数字地形分析,是地貌学学科发展的必然要求。作为地理学中最基础的分支学科,地貌学也亟待通过现代地理信息科学理论与技术的发展与支撑,实现研究范式与重点从单纯的基于DEM的地貌形态研究,走向面向地貌学本源问题研究的根本转型。在研究中,如果忽略地貌只搞形态,研究将难以理解地貌形态特征与其物质组成的内在辩证关系,这种内在辩证关系的不完整认知,就可能会造成诸如对一般台地与河流阶地“形似而神不似”的认知误区;如果离开地貌空谈形态,研究将难以科学认知不同地貌发育时的内在成因机理,易于造成地貌认知上的本末倒置以及研究上的形而上学,从而缺乏正确理解地貌形成的自然规律、成因机理与形态特征之间的因果关系;如果任由形态脱离地貌,研究将难以有效解读不同发育模式下的地貌演化过程,难以准确认知地貌演化过程中的过去、现在与未来,形态研究也将会过于理想化,最终陷入地貌学研究中演化过程表达的“数字游戏”陷阱;如果形态没有走向地貌,研究将无法立足于地理学,科学解读地貌形态在空间上的分异格局,而这种分异格局往往是地球表面物质与能量在空间上分配与重组的界限与基础,是指导国土资源战略调整的重要因素。
当前,数字地形分析进入到一个重要的发展瓶颈时期,已经形成了“基于DEM的地形因子与地形特征提取及可视化表达、地形特征统计与地貌分区制图”的分析范式。但是,数字地形分析研究急需从当前的地貌形态研究走向真正的面向成因机理、演化过程、及分异格局的地貌学本源研究。从当前的研究来看,面向地貌学本源的数字地形分析研究,在现有的研究基础上,亟需从不同的侧面进行突破。
(1)基于多种对地探测技术的发展,为地貌学深入研究地貌的成因、机理、过程创造了重要的条件,地貌学的发展也在呼唤现代地理信息技术的深度融合,呼唤通过对传统DEM及DTA的改造升级,特别是面向地貌学本源的数字地形分析的发展,推进地貌学、以及地理学的发展。
(2)现今,多尺度、高精度、全域覆盖的DEM数据体系已经形成,且各种地质、地表覆盖等其他要素数据也日益丰富。这些为DEM属性增值提供了有利的条件。因此,研究中应对当前DEM数据进行面向地貌学本源问题研究的属性增值。此外,地理信息科学领域应探讨对增值型DEM的数据模型与数据结构进行理论与方法。
(3)当前的DTA研究,无疑是以基于DEM的地形因子提取与分析为核心的。初步统计显示,已经提出的各种地形因子达到100多个。今后的研究应对其进行实际语义的标定、地貌学含义的标定及应用适宜性的标定;并有效提出对地貌学机理、过程、地貌要素空间关系、和区域地貌特征描述的地形因子。
(4)DTA方法在不断完善地形因子分析法、特征要素分析法、地形统计分析法的基础上,以我国科学家率先进行了地形信息图谱分析法、地貌发育机理与过程分析法的初步探索,在国际上独树一帜,形成了一定的特色与优势,为系统地进行面向地貌学本源的数字地形分析奠定了一定的基础,但成果是分散的、初探型的,亟待进行系统的顶层设计与研究规划。
诚然,本文没有指望数字地形分析的发展能够全面覆盖地貌学。一方面,当前的地貌学研究拥有丰富地貌专家知识与规则,它们是数字地形分析开展地貌学本源研究的重要基础,DTA即便实施了DEM数据增值、地形空间关系和宏观地形分析等研究,也替代不了业已形成的地貌专家知识与规则(如阶地成因知识与地貌演化规则)。另一方面,从地貌学研究来看,纵然是考虑了DEM、时间、地层、物质等因素的地貌演化模型,仍需要GIS数字地形分析研究中数据模型、数据结构、数据表达、数据分析、算法设计等多方面的支撑。此外,增值型DEM的构建并不仅仅是不同地貌要素数据层的简单叠加,而是从数据模型和数据结构的重构(即如图1中基于时空立方体和四面体等全新增值型DEM构建方法)。但是上述一系列研究侧面(或部分核心问题)的科学解答与突破,都将带来地貌学重要的理论创新与方法创新,同时丰富新时代的地理学的研究内涵。特别值得强调的是,构建面向地貌学本源的新一代数字地形分析,更是地理信息科学发展的必然要求。当今基于DEM的数字地形分析研究,正像当前的GIS是否能够真正支撑地理学发展一样,已经处于一个非常关键的十字路口。近年来,国内外科学家都在深入探索地理信息科学如何形成自身特有的理论体系与方法体系,如何走出当前数据处理与分析方法局限,真正支撑地理学及其他相应学科的发展,部分学者更是在深入分析当前GIS发展存在问题的基础上,提出了“重新发现GIS”的构想。地理信息科学在得到大数据、人工智能、高性能计算等新兴技术支撑的今天,如果在分析理念、分析模式、分析方法上有重要突破,必将带来新的变革与突破性发展。面向地貌学本源的数字地形分析研究思路如果得以实现,可望成为地理信息科学领域理论与方法创新的一次重要探索与实践。特别是,如果中国科学家率先在数字地形分析理论与方法中带头展开该领域研究,并取得实质性突破,就可望进一步巩固我们在国际数字地形分析领域的优势与地位,并形成独具特色的“中国学派”。
[1]
Zhang Xinbao, Wu Jishan, Wang Yangchun. Vertical geomorphologic zonation on the Northwest Sichuan Plateau and the effects of mountain hazards on the West Route of the South-to-North Water Diversion Project. Geographical Research, 2006,25(4):633-640.

[ 张信宝, 吴积善, 汪阳春. 川西北高原地貌垂直地带性及山地灾害对南水北调西线工程的影响. 地理研究, 2006,25(4):633-640.]

[2]
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 2015,347(6219):248-250.

DOI PMID

[3]
Pan Baotian, Li Jijun. Study on the geomorphic evolution and development of the Yellow River in the Hualong Basin. Mountain Research, 1996,14(3):153-158.

[ 潘保田, 李吉均. 化隆盆地地貌演化与黄河发育研究. 山地研究, 1996,14(3):153-158.]

[4]
Yang Huairen, Xu Xin, Li Guosheng. The causal mechanism of Quaternary environmental changes in China. Quaternary Sciences, 1989,9(2):97-111.

[ 杨怀仁, 徐馨, 李国胜. 第四纪中国自然环境变迁的原因机制. 第四纪研究, 1989,9(2):97-111.]

[5]
Cui P, Chen X Q, Zhu Y Y, et al. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 2011,56(1):19-36.

[6]
Nan Xi, Li Ainong, Chen Yu, et al. Design and compilation of digital mountain map of China (1:6700000) in vertical layout. Remote Sensing Technology and Application, 2016,31(3):451-458.

[ 南希, 李爱农, 陈昱, 等. 竖版中国数字山地图(1∶670万)的设计与编制. 遥感技术与应用, 2016,31(3):451-458.]

[7]
Li Ainong, Bian Jinhu, Zhang Zhengjian, et al. Progresses, opportunities, and challenges of mountain remote sensing research. Journal of Remote Sensing, 2016,20(5):1199-1215.

[ 李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战. 遥感学报, 2016,20(5):1199-1215.]

[8]
Jiang Jie, Chen Jun. Some consideration for update of fundation geo-information database. Bulletin of Surveying and Mapping, 2000(5):1-3.

[ 蒋捷, 陈军. 基础地理信息数据库更新的若干思考. 测绘通报, 2000(5):1-3.]

[9]
Chen Jun, Chen Lijun, Li Ran, et al. Spatial distribution and ten years change of global built-up areas derived from GlobeLand30. Acta Geodaetica et Cartographica Sinica, 2015,44(11):1181-1188.

[ 陈军, 陈利军, 李然, 等. 基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析. 测绘学报, 2015,44(11):1181-1188.]

[10]
Wang Cheng, Hu Peng, Liu Xiaohang, et al. An object-oriented image smoothing algorithm based on the convexity model and multi-scale segmentation. Geomatics and Information Science of Wuhan University, 2009,34(4):483-487.

[ 王琤, 胡鹏, 刘晓航, 等. 基于数字地形分析的火星地貌自动化分类方法. 武汉大学学报: 信息科学版, 2009,34(4):483-487.]

[11]
Lun W, Tong Q X. Framework and development of digital China. Science in China (Series E: Technological Sciences), 2008,51(Suppl. 1):1-5.

[12]
Li Xin, Liu Shaomin, Ma Mingguo, et al. An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 2012,27(05):481-498.

[ 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展, 2012,27(05):481-498.]

[13]
Zhang Baiping, Zhou Chenghu, Chen Shupeng. The geo-info-spectrum of montane altitudinal belts in China. Acta Geographica Sinica, 2003,58(2):163-171.

[ 张百平, 周成虎, 陈述彭. 中国山地垂直带信息图谱的探讨. 地理学报, 2003,58(2):163-171.]

[14]
Gan Zhimao. Effects of geomorphic features on soil erosion. Chinese Journal of Soil Science, 1980(5):16-17.

[ 甘枝茂. 地貌特征对土壤侵蚀的影响. 土壤通报, 1980(5):16-17.]

[15]
Chen Zhongyuan. Holocene Nile Delta sea-level fluctuations and its impact on environment: With special reference to the Changjiang River Delta. Acta Oceanologica Sinica, 2002,24(2):77-83.

[ 陈中原. 尼罗河三角洲全新世海平面变动及其对环境的影响: 长江三角洲的对比. 海洋学报, 2002,24(2):77-83.]

[16]
Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size composition of loess in Loess Plateau. Scientia Sinica(Terrae), 1998,28(3):278-283.

[ 鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义. 中国科学: 地球科学, 1998,28(3):278-283.]

[17]
Zhu C, Peng H, Li Z X, et al. Age and genesis of the Danxia landform on Jianglang Mountain, Zhejiang Province. Journal of Geographical Sciences, 2009,19(5):615-630.

[18]
Zheng Fenli, Gao Xuetian. Research progresses in hillslope soil erosion processes. Scientia Geographica Sinica, 2003,23(2):230-235.

[ 郑粉莉, 高学田. 坡面土壤侵蚀过程研究进展. 地理科学, 2003,23(2):230-235.]

[19]
Cui Zhijiu, Gao Quanzhou, Liu Gengnian, et al. Planation surface and karst age of the Qinghai-Tibet Plateau and its initial height. Chinese Science Bulletin, 1996,41(15):1402-1406.

[ 崔之久, 高全洲, 刘耕年, 等. 青藏高原夷平面与岩溶时代及其起始高度. 科学通报, 1996,41(15):1402-1406.]

[20]
Li Rui, Yang Qinke, Wu Pute, et al. On the strategy of sci-tech development of soil and water conservation in China in the 21st century. Science of Soil and Water Conservation, 2003,1(3):5-9.

[ 李锐, 杨勤科, 吴普特, 等. 中国水土保持科技发展战略思考. 中国水土保持科学, 2003,1(3):5-9.]

[21]
Wang Nai'ang, Zhao Jingdong, Yu Yingxiao, et al. The gradually improving scientific research paradigm on Quaternary glaciation in China: A review of the 4th Conference on Quaternary Glaciation and Environmental Variation in China. Journal of Glaciology and Geocryology, 2017,39(5):1029-1038.

[ 王乃昂, 赵井东, 余莺潇, 等. 渐趋完善的第四纪冰川研究范式: 记第四届中国第四纪冰川与环境变化研讨会. 冰川冻土, 2017,39(5):1029-1038.]

[22]
Cai Qiangguo, Lu Zhaoxiong, Wang Guiping. Process-based soil erosion and sediment yieid model in a small basin in the hilly loess region. Acta Geographica Sinica, 1996,51(2):108-117.

[ 蔡强国, 陆兆熊, 王贵平. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型. 地理学报, 1996,51(2):108-117.]

[23]
Walsh S J, Butler D R, Malanson G P. An overview of scale, pattern, process relationships in geomorphology: A remote sensing and GIS perspective. Geomorphology, 1998,21(3-4):183-205.

[24]
Yi Rulan, Chen Jianjun, Deng Min, et al. An approach for the design of loess geomorphology ontology. Geography and Geo-Information Science, 2009,25(2):46-49.

[ 易茹兰, 陈建军, 邓敏, 等. 黄土地貌本体的构建方法研究. 地理与地理信息科学, 2009,25(2):46-49.]

[25]
Wilcock P R, Schmidt J C, Wolman M G, et al. When models meet managers: Examples from geomorphology. Prediction in Geomorphology, 2003,135:41-50.

[26]
Chu P. Science in ancient China: Researches and reflections. The Journal of Asian Studies, 2010,60(2):538-540.

[27]
Needham J, Ling W. Science and Civilisation in ChinaVolume 3, Mathematics and the Sciences of the Heavens and the Earth. New York: Cambridge University Press, 1959.

[28]
Tinkler K J. A Short History of Geomorphology. Taylor & Francis, 1985.

[29]
Oldroyd D R, Grapes R H. Contributions to the history of geomorphology and Quaternary geology: An introduction. Geological Society London Special Publications, 2008,301(1):1-17.

[30]
Ritter D F, Kochel R C, Miller J R . Process Geomorphology. Long Grove: Waveland Pr Inc, 1986.

DOI PMID

[31]
Shchukin I S. On a "Structural" and "Climatic" geomorphology and a critique of certain concepts. Soviet Geography, 2014,11(4):246-251.

DOI

[32]
Lu Huayu, Guo Zhengtang. Climate change of East Asia in Late Cenozoic Era: Progresses and problems. Scientia Sinica(Terrae), 2013,43(12):1907-1918.

[ 鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 2013,43(12):1907-1918.]

[33]
Zhou Shangzhe, Li Jijun. New dating results of quaternary glaciations in China. Journal of Glaciology and Geocryology, 2003,25(6):660-666.

[ 周尚哲, 李吉均. 第四纪冰川测年研究新进展. 冰川冻土, 2003,25(6):660-666.]

[34]
Zhao Jingdong, Wang Jie, Shen Yongping, et al. Distribution and features of glacial landforms in the northwest of the Die Shan. Journal of Glaciology and Geocryology, 2013,35(4):841-847.

[ 赵井东, 王杰, 沈永平, 等. 西秦岭迭山西北部冰川地貌分布及其特征. 冰川冻土, 2013,35(4):841-847.]

[35]
Hails J R. Wind as a geological process. Earth-Science Reviews, 1987,24(3):231-232.

[36]
Bowman D, Svoray T, Devora S, et al. Extreme rates of channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead Sea, Israel. Geomorphology, 2010,114(3):227-237.

DOI

[37]
Gao M, Zeilinger G, Xu X, et al. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology, 2013,190:61-72.

DOI

[38]
Chen Y X, Cui Z J, Yang J Q. Influence of climate and tectonic movements on granite landforms in China. Journal of Geographical Sciences, 2009,19(5):587-599.

DOI

[39]
Cheng W, Nan W, Min Z, et al. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis. Geomorphology, 2016,257:134-142.

[40]
Lu Huayu. Progress in geomorphology and future study: A brief review. Progress in Geography, 2018,37(1):8-15.

[ 鹿化煜. 试论地貌学的新进展和趋势. 地理科学进展, 2018,37(1):8-15.]

[41]
Tang Guoan, Li Fayuan, Yang Xin, et al. Exploration and Practice of Digital Terrain Analysis on the Loess Plateau. Beijing:Science Press, 2015.

[ 汤国安, 李发源, 杨昕, 等. 黄土高原数字地形分析的探索与实践. 北京:科学出版社, 2015.]

[42]
Wang Jiayao, Cui Tiejun, Miao Guoqiang. Digital elevation model and data structure. Hydrographic Surveying and Charting, 2004,24(3):1-4.

[ 王家耀, 崔铁军, 苗国强. 数字高程模型及其数据结构. 海洋测绘, 2004,24(3):1-4.]

[43]
Gong Jianya. An unified data structure based on linear quadtrees. Acta Geodaetica et Cartographica Sinica, 1992(4):259-266.

[ 龚健雅. GIS中矢量栅格一体化数据结构的研究. 测绘学报, 1992(4):259-266.]

[44]
Yang B, Shi W, Li Q. An integrated TIN and grid method for constructing multi-resolution digital terrain models. International Journal of Geographical Information Science, 2005,19(10):1019-1038.

[45]
Yue T X, Du Z P, Song D J, et al. A new method of surface modeling and its application to DEM construction. Geomorphology, 2007,91(1):161-172.

[46]
Wilson J P, Gallant J C. Terrain Analysis: Principles and Applications. Hoboken: John Wiley & Sons, 2000.

[47]
Ardiansyah P O D, Yokoyama R. DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function. ISPRS Journal of Photogrammetry & Remote Sensing, 2002,57(1):86-101.

[48]
Alberto C, Gabriele B, Roberto C. Comparison of techniques for generating digital terrain models from contour lines. International Journal of Geographical Information Systems, 1997,11(5):451-473.

[49]
Lars E, Ulrik M. Rapid generation of digital elevation models from topographic maps. International Journal of Geographical Information Systems, 1995,9(3):329-340.

[50]
Li Deren, Chen Xiaoyong. Automatical generation of triangulated irregular networks for DTM by mathematical morphology. Acta Geodaetica et Cartographica Sinica, 1990,19(3):161-172.

[ 李德仁, 陈晓勇. 用数学形态学变换自动生成DTM三角形格网的方法. 测绘学报, 1990,19(3):161-172.]

[51]
Wang Yaoge, Zhu Changqing, Wang Zhiwei. A surface model of grid DEM based on Coons surface. Acta Geodaetica et Cartographica Sinica, 2008,37(2):217-222.

[ 王耀革, 朱长青, 王志伟. 基于Coons曲面的规则格网DEM表面模型. 测绘学报, 2008,37(2):217-222.]

[52]
Chen Chuanfa, Liu Fengying, Yan Changqing, et al. A huber-derived robust multi-quadric interpolation method for DEM construction. Geomatics and Information Science of Wuhan University, 2016,41(6):803-809.

[ 陈传法, 刘凤英, 闫长青, 等. DEM建模的多面函数Huber抗差算法. 武汉大学学报: 信息科学版, 2016,41(6):803-809.]

[53]
Dang Yamin, Zhang Chuanyin, Zhou Xinghua, et al. Shoreline surveying method based on the stereo imaging and mapping. Bulletin of Surveying and Mapping, 2017(11):47-50.

[ 党亚民, 章传银, 周兴华, 等. 海岛岸线遥感立体测图精细测量方法. 测绘通报, 2017(11):47-50.]

[54]
Tang Xinming, Li Tao, Gao Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping application using automatic SAR imaging. Acta Geodaetica et Cartographica Sinica, 2018,47(6):730-740.

[ 唐新明, 李涛, 高小明, 等. 雷达卫星自动成图的精密干涉测量关键技术. 测绘学报, 2018,47(6):730-740.]

[55]
Jiang Guimei, Nie Qian, Chen Xiaosong. Key technologies analysis of DEM production based on LIDAR data. Bulletin of Surveying and Mapping, 2017(6):90-93.

[ 蒋桂美, 聂倩, 陈小松. 利用机载激光点云数据生产DEM的关键技术分析. 测绘通报, 2017(6):90-93.]

[56]
Lucieer A, Turner D, King D H, et al. Using an unmanned aerial vehicle (UAV) to capture micro-topography of Antarctic moss beds. International Journal of Applied Earth Observation & Geoinformation, 2014,27(4):53-62.

[57]
Uysal M, Toprak A S, Polat N. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler Hill. Measurement, 2015,73:539-543.

[58]
Spaete L P, Glenn N F, Derryberry D R, et al. Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe. Remote Sensing Letters, 2011,2(4):317-326.

[59]
Fisher G B, Bookhagen B, Amos C B. Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology, 2013,194(2):46-56.

[60]
Noh M J, Howat I M. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing, 2015,52(2):198-217.

[61]
Zhang Wenjie, Cheng Weiming, Li Baolin, et al. The relationship between gully erosion and geomorphological factors in the hill and ravine region of the Loess Plateau. Journal of Geo-Information Science, 2014,16(1):87-94.

[ 张文杰, 程维明, 李宝林, 等. 黄土高原丘陵沟壑区切沟侵蚀与地形关系分析: 以纸坊沟流域为例. 地球信息科学学报, 2014,16(1):87-94.]

[62]
Liu Aili, Tang Guoan. DEM based auto-classification of chinese landform. Geo-Information Science, 2006,8(4):8-14.

[ 刘爱利, 汤国安. 中国地貌基本形态DEM的自动划分研究. 地球信息科学, 2006,8(4):8-14.]

[63]
Ma Shibin, An Yulun. Auto-classification of landform in karst region based on ASTER GDEM. Scientia Geographica Sinica, 2012,32(3):368-373.

[ 马士彬, 安裕伦. 基于ASTER GDEM数据喀斯特区域地貌类型划分与分析. 地理科学, 2012,32(3):368-373.]

[64]
Evans I S. Major Scale Forms.Encyclopedia of Quaternary Science. 2nd ed. Amsterdam: Elsevier, 2013:847-864.

[65]
Williams P W, Liu Hong, Song Linhua. Geomorphologic inheritance and development of tower karst. Geography Translation, 1990,9(1):11-16.

[ P. W. 威廉姆斯, 刘宏, 宋林华, 地貌继承性和塔状喀斯特的发育. 地理译报, 1990,9(1):11-16.]

[66]
Yuan Baoyin, Guo Zhengtang, Hao Qingzhen, et al. Cenozoic evolution of geomorphic and sedmentary environments in the Tianshui-Qin'an regions. Quaternary Sciences, 2007,27(2):161-171.

[ 袁宝印, 郭正堂, 郝青振, 等. 天水—秦安一带中新世黄土堆积区沉积-地貌演化. 第四纪研究, 2007,27(2):161-171.]

[67]
Yang Qinke, Shi Weijuan, Mcvicar Tim, et al. On constructing methods of hydrologically correct DEMs. Science of Soil and Water Conservation, 2007,5(4):1-6.

[ 杨勤科, 师维娟, Mcvicar Tim, , 等. 水文地貌关系正确DEM的建立方法. 中国水土保持科学, 2007,5(4):1-6.]

[68]
Fu Bojie, Wang Xilin. The application of DEM in studying soil erosion type and process in the loess hilly and gully area. Journal of Soil and Water Conservation, 1994,8(3):17-21.

[ 傅伯杰, 汪西林. DEM在研究黄土丘陵沟壑区土壤侵蚀类型和过程中的应用. 水土保持学报, 1994,8(3):17-21.]

[69]
Minár J, Evans I S, Krcho J. Geomorphometry: Quantitative Land-surface Analysis. Treatise on Geomorphology. Amsterdam:Elsevier. 2013: 22-34.

[70]
Chen Tao, Zhang Huiping, Wang Weitao. Topographic variation along the middle-east segment of Haiyuan Fault Zone and its implications. Seismology and Geology, 2014,36(2):449-463.

[ 陈涛, 张会平, 王伟涛. 海原断裂带中东段地貌差异及其成因探讨. 地震地质, 2014,36(2):449-463.]

[71]
Li Bingyuan, Pan Baotian, Cheng Weiming, et al. Research on geomorphological regionalization of China. Acta Geographica Sinica, 2013,68(3):291-306.

[ 李炳元, 潘保田, 程维明, 等. 中国地貌区划新论. 地理学报, 2013,68(3):291-306.]

[72]
Moharana P C, Kar A. Watershed simulation in a sandy terrain of the Thar desert using GIS. Journal of Arid Environments, 2002,51(4):489-500.

[73]
Wilson J P. Geomorphometry: Today and tomorrow. Peer J Preprints, 2018,6. DOI: 10.7287/peerj.preprints.27197v1.

[74]
Li Zhilin. Digital terrain analysis. Acta Geographica Sinica, 2006,61(12):1326.

[ 李志林. 数字地形分析. 地理学报, 2006,61(12):1326.]

[75]
Yang Xin, Tang Guoan, Liu Xuejun, et al. Digital terrain analysis: Theory, method and application. Acta Geographica Sinica, 2009,64(9):1058-1070.

[ 杨昕, 汤国安, 刘学军, 等. 数字地形分析的理论、方法与应用. 地理学报, 2009,64(9):1058-1070.]

[76]
Gomez C, Oguchi T, Evans I S. Spatial analysis in geomorphology (1): Present directions, from collection to processing. Geomorphology, 2015,242:1-2.

[77]
Tang Guoan, Liu Xuejun, Lv Guonian. The Principle and Method of Digital Elevation Model for Geo-analysis. Beijing:Science Press, 2005.

[ 汤国安, 刘学军, 闾国年. 数字高程模型及地学分析的原理与方法. 北京:科学出版社, 2005.]

[78]
Florinsky I V. Computation of the third-order partial derivatives from a digital elevation model. International Journal of Geographical Information Science, 2009,23(2):213-231.

[79]
Liu Xuejun, Bian Lu, Lu Huaxing, et al. The accuracy assessment on slope algorithms with DEM error spatial autocorrelation. Acta Geodaetica et Cartographica Sinica, 2008,37(2):200-206.

[ 刘学军, 卞璐, 卢华兴, 等. 顾及DEM误差自相关的坡度计算模型精度分析. 测绘学报, 2008,37(2):200-206.]

[80]
Li Runchao, Yuan Linwang, Li Shuo, et al. A vector field template matching method of DEM slope extraction. Acta Geodaetica et Cartographica Sinica, 2013,42(6):922-928.

[ 李润超, 袁林旺, 李硕, 等. DEM坡向提取的向量场模板匹配方法. 测绘学报, 2013,42(6):922-928.]

[81]
Tang Guoan, Li Fayuan, Xiong Liyang. Progress of digital terrain analysis in the Loess Plateau of China. Geography and Geo-Information Science, 2017,33(4):1-7.

[ 汤国安, 李发源, 熊礼阳. 黄土高原数字地形分析研究进展. 地理与地理信息科学, 2017,33(4):1-7.]

[82]
Schmidt J, Evans I S, Brinkmann J. Comparison of polynomial models for land surface curvature calculation. International Journal of Geographical Information Science, 2003,17(8):797-814.

[83]
Qiu Linjing, Zheng Fenli, Yin Runsheng. Effects of DEM resolution and watershed subdivision on hydrological simulation in the Xingzihe watershed. Acta Ecologica Sinica, 2012,32(12):3754-3763.

[ 邱临静, 郑粉莉, Yin Runsheng. DEM栅格分辨率和子流域划分对杏子河流域水文模拟的影响. 生态学报, 2012,32(12):3754-3763.]

[84]
Qin Chengzhi, Zhu Axing, Li Baolin, et al. Review of multiple flow direction algorithms based on gridded digital elevation models. Earth Science Frontiers, 2006,13(3):91-98.

[ 秦承志, 朱阿兴, 李宝林, 等. 基于栅格DEM的多流向算法述评. 地学前缘, 2006,13(3):91-98.]

[85]
Wu Lun, Wang Daming, Zhang Yi. Research on the algorithms of the flow direction determination in ditches extraction based on grid DEM. Journal of Image and Graphics, 2006,11(7):998-1003.

[ 邬伦, 汪大明, 张毅. 基于DEM的水流方向算法研究. 中国图象图形学报, 2006,11(7):998-1003.]

[86]
Jiang Haochen, Yang Qinke. Algorithm comparison of relief amplitude based on dynamic effect model. Bulletin of Soil and Water Conservation, 2014,34(6):162-166.

[ 蒋好忱, 杨勤科. 基于DEM的地形起伏度算法的比较研究. 水土保持通报, 2014,34(6):162-166.]

[87]
Zhou Qiming, Liu Xuejun. Digital Terrain Analysis. Beijing:Science Press, 2006.

[ 周启鸣, 刘学军. 数字地形分析. 北京:科学出版社, 2006.]

[88]
Scown M W, Thoms M C, De Jager N R . Floodplain complexity and surface metrics: Influences of scale and geomorphology. Geomorphology, 2015,245:102-116.

[89]
Sun Chongliang, Wang Juanle. The progress on automatic basin streamline extracting & classifying methods based on DEM. Progress in Geography, 2008,27(1):118-124.

[ 孙崇亮, 王卷乐. 基于DEM的水系自动提取与分级研究进展. 地理科学进展, 2008,27(1):118-124.]

[90]
Tarboton D G, Bras R L, Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data. Hydrological Processes, 1991,5(1):81-100.

[91]
Liu Changming, Hong Baoxin, Zeng Mingxuan, et al. Preliminary experimental study on the relationship between storm runoff forecast on the Loess Plateau. Chinese Science Bulletin, 1965,10(2):158-161.

[ 刘昌明, 洪宝鑫, 曾明煊, 等. 黄土高原暴雨径流预报关系初步实验研究. 科学通报, 1965,10(2):158-161.]

[92]
Li Libo, Xu Gang, Hu Jianmin. Quantitative analysis of active structures based on the upper reaches of the Weihe River in DEM. Quaternary Sciences, 2012,32(5):866-879.

[ 李利波, 徐刚, 胡健民. 基于DEM渭河上游流域的活动构造量化分析. 第四纪研究, 2012,32(5):866-879.]

[93]
Yang X, Tang G, Xiao C, et al. The scaling method of specific catchment area from DEMs. Journal of Geographical Sciences, 2011,21(4):689-704.

[94]
Tang G, Xiao C, Jia D, et al. DEM based investigation of loess shoulder-line. Geoinformatics 2007: Geospatial Information Science. Proceedings of the SPIE, 2007,6753:67532E. DOI: 10.1117/12.761941.

[95]
Zhang Wei. Research of catchment profile spectrum on northern Shaanxi Loess Plateau, China[D]. Nanjing: Nanjing Normal University, 2011.

[ 张维. 基于DEM的陕北黄土高原流域剖面谱研究[D]. 南京: 南京师范大学, 2011.]

[96]
Wang Peifa, Du Jinkang, Feng Xuezhi. Effect of sink filling on DEM uncertainty evaluation. Geography and Geo-Information Science, 2007,23(1):24-26.

[ 王培法, 都金康, 冯学智. DEM不确定性影响评价中的填洼分析. 地理与地理信息科学, 2007,23(1):24-26.]

[97]
Tang Guoan, Zhao Mudan, Li Tianwen, et al. Uncertainty of DEM extraction of ground slope in Loess Plateau. Acta Geographica Sinica, 2003,58(6):824-830.

[ 汤国安, 赵牡丹, 李天文, 等. DEM提取黄土高原地面坡度的不确定性. 地理学报, 2003,58(6):824-830.]

[98]
Wang Cheng, Chen Zhengjiang, Yang Qinke, et al. Analysis on uncertainty of DEM derived watershed distributed slope length. Research of Soil and Water Conservation, 2012,19(2):15-18.

[ 王程, 陈正江, 杨勤科, 等. 流域分布式坡长不确定性的初步分析. 水土保持研究, 2012,19(2):15-18.]

[99]
Zhang Jinming, You Xiong. A prediction model of optimum statistical unit of relief. Journal of Remote Sensing, 2013,17(4):728-741.

[ 张锦明, 游雄. 地形起伏度最佳分析区域预测模型. 遥感学报, 2013,17(4):728-741.]

[100]
Li Jun, Zhou Chenghu. Appropriate grid size for terrain based landslide risk assessment in Lantau Island, Hong Kong. Journal of Remote Sensing, 2003,7(2):86-92.

[ 李军, 周成虎. 基于栅格GIS滑坡风险评价方法中格网大小选取分析. 遥感学报, 2003,7(2):86-92.]

[101]
Blaschke T. What's wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS, 2001,6:12-17.

[102]
Ariza-Villaverde A, Jiménez-Hornero F, De Ravé E G . Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology, 2015,241:243-254.

[103]
Zhang Wei, Li Ainong. Study on the optimal scale for calculating the relief amplitude in China based on DEM. Geography and Geo-Information Science, 2012,28(4):8-12.

[ 张伟, 李爱农. 基于DEM的中国地形起伏度适宜计算尺度研究. 地理与地理信息科学, 2012,28(4):8-12.]

[104]
Tang Guoan, Liu Xuejun, Fang Liang, et al. A review on the scale issue in DEMs and digital terrain analysis. Geomatics and Information Science of Wuhan University, 2006,31(12):1059-1066.

[ 汤国安, 刘学军, 房亮, 等. DEM及数字地形分析中尺度问题研究综述. 武汉大学学报: 信息科学版, 2006,31(12):1059-1066.]

[105]
Qin Chengzhi, Lu Yanjun, Bao Lili, et al. Simple Digital Terrain Analysis software (SimDTA 1.0) and its application in fuzzy classification of slope positions. Journal of Geo-Information Science, 2009,11(6):737-743.

DOI

[ 秦承志, 卢岩君, 包黎莉, 等. 简化数字地形分析软件(SimDTA)及其应用: 以嫩江流域鹤山农场区的坡位模糊分类为例. 地球信息科学学报, 2009,11(6):737-743.]

[106]
Song Xiaodong, Dou Wanfeng, Tang Guoan, et al. Research on data partitioning of distributed parallel terrain analysis. Journal of National University of Defense and Technology, 2013,35(1):130-135.

[ 宋效东, 窦万峰, 汤国安, 等. 分布式并行地形分析中数据划分机制研究. 国防科技大学学报, 2013,35(1):130-135.]

[107]
Liu K, Tang G, Jiang L, et al. Regional-scale calculation of the LS factor using parallel processing. Computers & Geosciences, 2015,78(C):110-122.

[108]
Ai Beibei, Qin Chengzhi, Zhu Axing. Parallelization of regional operation algorithm using parallel raster-based geocomputation operators. Journal of Geo-Information Science, 2015,17(5):562-567.

DOI

[ 艾贝贝, 秦承志, 朱阿兴. 栅格地理计算并行算子对区域计算算法并行化的可用性分析: 以多流向算法为例. 地球信息科学学报, 2015,17(5):562-567.]

[109]
Wood J. The geomorphological characterisation of digital elevation models[D]. Leicester: University of Leicester, 1996.

[110]
Wu Lun. Geographic Information System:Principles, Methods and Applications. Beijing:Science Press, 2011.

[ 邬伦. 地理信息系统:原理, 方法和应用. 北京: 科学出版社, 2001.]

[111]
Florinsky I V. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography, 1998,22(1):33-60.

[112]
Tang Guoan. Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica, 2014,69(9):1305-1325.

DOI

[ 汤国安. 我国数字高程模型与数字地形分析研究进展. 地理学报, 2014,69(9):1305-1325.]

[113]
Evans I S. Geomorphometry and landform mapping: What is a landform? Geomorphology, 2012,137(1):94-106.

DOI

[114]
Takahashi S, Ikeda T, Shinagawa Y, et al. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Computer Graphics Forum, 1995,14(3):181-192.

DOI

[115]
Xiong L Y, Tang G A, Zhu A X, et al. A peak-cluster assessment method for the identification of upland planation surfaces. International Journal of Geographical Information Science, 2017,31(2):387-404.

DOI

[116]
Liu Yong, Wang Yixiang, Pan Baotian. A preliminary approach on the 3D presentation and quantitative analysis of planation surface. Geographical Research, 1999,18(4):391-399.

[ 刘勇, 王义祥, 潘保田. 夷平面的三维显示与定量分析方法初探. 地理研究, 1999,18(4):391-399.]

[117]
Pan Baotian, Gao Hongshan, Li Jijun. On problems of planation surface: A discussion on the planation surface in Qinghai-Xizang Plateau. Scientia Geographica Sinica, 2002,22(5):520-526.

[ 潘保田, 高红山, 李吉均. 关于夷平面的科学问题: 兼论青藏高原夷平面. 地理科学, 2002,22(5):520-526.]

[118]
Zhu Hongchun, Tang Guoan, Li Yongsheng. The loess gully feature points cluster and its spatial structure model. Scientia Geographica Sinica, 2015,35(9):1170-1175.

[ 朱红春, 汤国安, 李永胜. 黄土沟谷特征点簇及其空间结构模型研究. 地理科学, 2015,35(9):1170-1175.]

[119]
Chen Shupeng, Yue Tianxiang, Li Huiguo. Studies on Geo-Informatic Tupu and its application. Geographical Research, 2000,19(4):337-343.

[ 陈述彭, 岳天祥, 励惠国. 地学信息图谱研究及其应用. 地理研究, 2000,19(4):337-343.]

[120]
Tang G, Li F, Liu X, et al. Research on the slope spectrum of the Loess Plateau. Science in China Series E: Technological Sciences, 2008,51(1):175-185.

DOI

[121]
Wu Rui, Wang Lanhui, Tang Guoan. Terrain profile spectrum of China land border. Geography and Geo-Information Science, 2012,28(5):51-54, 2.

[ 吴瑞, 王兰辉, 汤国安. 中国陆地边界地形剖面谱研究初探. 地理与地理信息科学, 2012,28(5):51-54, 2]

[122]
Li M, Yang X, Na J, et al. Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles. Progress in Physical Geography, 2017,41(3):302-324.

[123]
Zhu Shijie, Tang Guoan, Li Fayuan, et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM. Acta Geographica Sinica, 2013,68(7):921-932.

[ 祝士杰, 汤国安, 李发源, 等. 基于DEM的黄土高原面积高程积分研究. 地理学报, 2013,68(7):921-932.]

[124]
Tao Yang. Texture analysis based research on terrain morphology characteristics[D]. Nanjing: Nanjing Normal University, 2011.

[ 陶旸. 基于纹理分析方法的DEM地形特征研究[D]. 南京: 南京师范大学, 2011.]

[125]
Qiu Shanwen, Li Fenghua. On the problem of geomorphological classification in China. Scientia Geographica Sinica, 1982,2(4):327-335.

[ 裘善文, 李风华. 试论地貌分类问题. 地理科学, 1982,2(4):327-335.]

[126]
Cheng W, Zhou C, Chai H, et al. Research and compilation of the Geomorphologic Atlas of the People's Republic of China (1:1,000,000). Journal of Geographical Sciences, 2011,21(1):89-100.

DOI

[127]
Shen Yuchang. Geomorphological Regionalization Theory System of China. Beijing:Science Press, 1956.

[ 沈玉昌. 中国地貌区划(初稿). 北京:科学出版社, 1956.]

[128]
Li Bingyuan, Pan Baotian, Han Jiafu. Basic terrestrial geomorphological types in China and their circumscriptions. Quaternary Sciences, 2008,28(4):535-543.

[ 李炳元, 潘保田, 韩嘉福. 中国陆地基本地貌类型及其划分指标探讨. 第四纪研究, 2008,28(4):535-543.]

[129]
Luo Laixing. A tentative classification of landforms in the Loess Plateau. Acta Geographica Sinica, 1956,11(3):201-222.

[ 罗来兴. 划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型. 地理学报, 1956,11(3):201-222.]

[130]
Chen Chuankang. The terrain types and development rules of loess landform in southeastern region of Gansu. Acta Geographica Sinica, 1956,11(3):37-45.

[ 陈传康. 陇东东南部黄土地形类型及其发育规律. 地理学报, 1956,11(3):37-45.]

[131]
Liu Dongsheng. Loess and Environment. Beijing:Science Press, 1985.

[ 刘东生. 黄土与环境. 北京:科学出版社, 1985.]

[132]
Xiong L Y, Tang G A, Zhu A X, et al. Paleotopographic controls on modern gully evolution in the loess landforms of China. Science China Earth Sciences, 2017,60(3):438-451.

DOI

[133]
Xiong L Y, Tang G A, Strobl J, et al. Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surface Processes and Landforms, 2016,41(9):1155-1168.

DOI

[134]
Xiong L Y, Tang G A, Li F Y, et al. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 2014,209:18-26.

DOI

[135]
Dong Zhibao, Qu Jianjun, Lu Jinhua, et al. Compilation of Geomorphic Map of the Kumtagh Desert. Journal of Desert Research, 2010,30(3):483-491.

[ 董治宝, 屈建军, 陆锦华, 等. 1∶35万《库姆塔格沙漠地貌图》的编制. 中国沙漠, 2010,30(3):483-491.]

[136]
Zhang Zhengcai, Dong Zhibao. Research progress on aeolian geomorphology and morphodynamics. Advances in Earth Science, 2014,29(6):734-747.

DOI

[ 张正偲, 董治宝. 风沙地貌形态动力学研究进展. 地球科学进展, 2014,29(6):734-747.]

[137]
Zeng Zhaoxuan. Some questions on the classification of relief types in karst region in south China. Acta Geologica Sinica, 1964,38(1):121-132.

[ 曾昭璇. 中国南部石灰岩地貌类型若干問題. 地质学报, 1964,38(1):121-132.]

[138]
Qin Houren, Zhu Dehao. A proposed classification of tropical and subtropical karst features in south China. Carsologica Sinica, 1984,3(2):67-73.

[ 覃厚仁, 朱德浩. 中国南方热带、亚热带岩溶地貌分类方案. 中国岩溶, 1984,3(2):67-73.]

[139]
Wang Shijie, Zhang Xinbao, Bai Xiaoyong. An outline of karst geomorphology zoning in the karst areas of southern China. Mountain Research, 2015,33(6):641-648.

[ 王世杰, 张信宝, 白晓永. 中国南方喀斯特地貌分区纲要. 山地学报, 2015,33(6):641-648.]

[140]
Cui Zhijiu. Essential features of the development of glacial landforms on Qinghai-Xizang Plateau. Acta Geographica Sinica, 1980,35(2):137-148.

[ 崔之久. 青藏高原(及其邻近山地)冰川侵蚀地貌发育的基本特征与影响因素. 地理学报, 1980,35(2):137-148.]

[141]
Guo Liuping, Ye Qinghua, Yao Tandong, et al. The glacial landforms and the changes of glacier and lake area in the Mapam Yumco Basin in Tibetan Plateau based on GIS. Journal of Glaciology and Geocryology, 2007,29(4):517-524.

[ 郭柳平, 叶庆华, 姚檀栋, 等. 基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究. 冰川冻土, 2007,29(4):517-524.]

[142]
Qin Chengzhi, Zhu Axing, Shi Xun, et al. Fuzzy inference of spatial gradation of slope positions. Geographical Research, 2007,26(6):1165-1174.

[ 秦承志, 朱阿兴, 施迅, 等. 坡位渐变信息的模糊推理. 地理研究, 2007,26(6):1165-1174.]

[143]
Cullum C, Brierley G, Perry G L, et al. Landscape archetypes for ecological classification and mapping: The virtue of vagueness. Progress in Physical Geography, 2017,41(1):95-123.

[144]
Drăguţ L, Blaschke T. Automated classification of landform elements using object-based image analysis. Geomorphology, 2006,81(3/4):330-344.

DOI

[145]
Hengl T, Rossiter D G. Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey. Soil Science Society of America Journal, 2003,67(6):1810-1822.

DOI

[146]
Xiong L Y, Zhu A X, Zhang L, et al. Drainage basin object-based method for regional-scale landform classification: A case study of loess area in China. Physical Geography, 2018,39(6):523-541.

Outlines

/