Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin
Received date: 2019-05-09
Request revised date: 2020-08-25
Online published: 2021-01-25
Supported by
National Natural Science Foundation of China(51539009)
Copyright
As a link between the atmosphere and the geosphere, the hydrological cycle is affected by both climate change and Land Use/Cover Change (LUCC). However, most existing research on runoff response focused mainly on the impact of the projected climate variation, neglecting the influence of future LUCC variability. Therefore, the objective of this study is to examine the co-impacts of both projected climate change and LUCC on runoff generation. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and corrected by the Daily Bias Correction (DBC) model. Secondly, the LUCC scenarios are predicted based on the Cellular Automaton-Markov (CA-Markov) model. Finally, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process under different combinations of climate and LUCC scenarios, with the attempt to quantitatively evaluate the impacts of climate change and LUCC on runoff generation. In this study, the Hanjiang River basin is used as the case study area. The results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum and minimum air temperatures during 2021-2060 will have an increase of 4.0%, 1.8 ℃, 1.6 ℃ in RCP4.5 scenario, respectively, while 3.7%, 2.5 ℃, 2.3 ℃ in RCP8.5 scenario, respectively. (2) During 2010-2050, the area proportions of forest land and construction land in the study area will increase by 2.8% and 1.2%, respectively, while those of farmland and grassland will decrease by 1.5% and 2.5%, respectively. (3) Compared with the single climate change or LUCC scenario, the variation range of future runoff under both climate and LUCC is the largest, and the influence of climate change on future runoff is significantly greater than that of LUCC. This study is helpful to maintain the future water resources planning and management of the Hanjiang River basin under future climate and LUCC scenarios.
Key words: climate change; LUCC; CA-Markov model; runoff responses; Hanjiang River basin
TIAN Jing , GUO Shenglian , LIU Dedi , CHEN Qihui , WANG Qiang , YIN Jiabo , WU Xushu , HE Shaokun . Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin[J]. Acta Geographica Sinica, 2020 , 75(11) : 2307 -2318 . DOI: 10.11821/dlxb202011003
图3 BCC-CSM1.1气候模式下汉江流域日降水和气温模拟效果评价Fig. 3 Evaluation of precipitation and temperature simulation results in the Hanjiang River basin under BCC-CSM1.1 |
表1 未来降水和气温均值变化情况Tab. 1 The annual mean changes of precipitation and temperature in the future period |
全流域 | 基准期 | 未来(2021—2060年) | ||||
---|---|---|---|---|---|---|
(1966—2005年) | RCP 4.5 | RCP 8.5 | ||||
均值 | 均值 | 变化量Δ | 均值 | 变化量Δ | ||
降水(mm) | 849.4 | 883.0 | +33.6 | 880.9 | +31.5 | |
最高气温(℃) | 20.3 | 22.1 | +1.8 | 22.8 | +2.5 | |
最低气温(℃) | 10.5 | 12.1 | +1.6 | 12.8 | +2.3 |
表2 汉江流域未来土地利用类型面积占比(%)Tab. 2 Percentages of future land use type area in theHanjiang River basin (%) |
土地类型 | 历史情景 | 未来情景 | |||
---|---|---|---|---|---|
2010 | 2020 | 2030 | 2040 | 2050 | |
耕地 | 35.2 | 34.5 | 34.2 | 33.9 | 33.7 |
林地 | 40.0 | 41.0 | 41.4 | 42.0 | 42.8 |
草地 | 19.2 | 18.6 | 18.3 | 17.7 | 16.7 |
水域 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
建设用地 | 2.7 | 3.0 | 3.2 | 3.5 | 3.9 |
裸地 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
表3 SWAT模型率定和检验结果Tab. 3 Calibration and validation results of the SWAT model |
序号 | 水文站 | 率定期(1980—1993年) | 检验期(1994—2000年) | ||
---|---|---|---|---|---|
NSE | RE(%) | NSE | RE(%) | ||
1 | 安康 | 0.93 | 2.4 | 0.83 | 8.1 |
2 | 白河 | 0.93 | -0.3 | 0.78 | -1.9 |
3 | 丹江口 | 0.87 | 12.1 | 0.75 | 14.5 |
4 | 皇庄 | 0.82 | -1.4 | 0.66 | 7.1 |
平均绝对值 | 0.89 | 4.1 | 0.76 | 7.9 |
表4 LUCC情景下汉江流域未来径流变化情况Tab. 4 Runoff changes under LUCC scenario in the Hanjiang River basin in the future |
时间 | 2010年 | 2020年 | 2030年 | 2040年 | 2050年 | ||||
---|---|---|---|---|---|---|---|---|---|
模拟值 (m3/s) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | |
全年 | 1743 | 1744 | 0.06 | 1745 | 0.10 | 1756 | 0.73 | 1744 | 0.07 |
汛期 | 2620 | 2621 | 0.05 | 2626 | 0.24 | 2656 | 1.36 | 2625 | 0.20 |
非汛期 | 866 | 861 | -0.58 | 863 | -0.31 | 856 | -1.16 | 864 | -0.29 |
表5 3种情景与基准情景相比的径流变化情况Tab. 5 Comparison of the runoff between three scenarios and the scenario S0 |
情景 | 模拟值(m3/s) | 变化率(%) | 情景 | 模拟值(m3/s) | 变化率(%) |
---|---|---|---|---|---|
S1_RCP 4.5 | 1829 | +4.95 | S2_2020 | 1744 | +0.06 |
S1_RCP 8.5 | 1786 | +2.47 | S2_2030 | 1745 | +0.10 |
S3_RCP 4.5 | 1832 | +5.10 | S2_2040 | 1756 | +0.73 |
S3_RCP 8.5 | 1790 | +2.67 | S2_2050 | 1744 | +0.07 |
表6 未来时期气候及径流变化量Tab. 6 The change values of future climate factors and runoff |
情景 | ΔP(mm) | ΔT(℃) | ΔR(m3/s) | ΔR/ΔP |
---|---|---|---|---|
S1_RCP 4.5 | 33.6↑ | 1.7↑ | 86↑ | 2.56 |
S1_RCP 8.5 | 31.5↑ | 2.4↑ | 43↑ | 1.37 |
注:↑表示径流的变化方向与气候因子的变化一致。 |
[1] |
|
[2] |
|
[3] |
[ 梁国付, 丁圣彦. 气候和土地利用变化对径流变化影响研究: 以伊洛河流域伊河上游地区为例. 地理科学, 2012,32(5):635-640.]
|
[4] |
|
[5] |
[ 赵阳, 余新晓, 郑江坤, 等. 气候和土地利用变化对潮白河流域径流变化的定量影响. 农业工程学报, 2012,28(22):252-260.]
|
[6] |
[ 郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响. 生态学报, 2014,34(6):1559-1567.]
|
[7] |
[ 袁宇志, 张正栋, 蒙金华. 基于SWAT模型的流溪河流域土地利用与气候变化对径流的影响. 应用生态学报, 2015,26(4):989-998.]
|
[8] |
|
[9] |
|
[10] |
|
[11] |
[ 冯畅, 毛德华, 周慧, 等. 气候与土地利用变化对涟水流域径流的影响. 冰川冻土, 2017,39(2):395-406.]
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[ 杨俊, 解鹏, 席建超, 等. 基于元胞自动机模型的城市土地利用变化模拟: 以大连经济技术开发区为例. 地理学报, 2015,70(3):461-475.]
|
[16] |
[ 邱炳文, 陈崇成. 基于多目标决策和CA模型的土地利用变化预测模型及其应用. 地理学报, 2008,63(2):165-174.]
|
[17] |
|
[18] |
[ 赖格英, 吴敦银, 钟业喜, 等. SWAT模型的开发与应用进展. 河海大学学报(自然科学版), 2012,40(3):243-251.]
|
[19] |
[ 闫宇会, 薛宝林, 张路方. 基于SWAT模型的海拉尔河上游土地利用与气候变化对径流的影响. 聊城大学学报(自然科学版), 2020,33(2):89-96.]
|
[20] |
[ 顾问, 陈葆德, 杨玉华, 等. IPCC-AR4全球气候模式在华东区域气候变化的预估能力评价与不确定性分析. 地理科学进展, 2010,29(7):818-826.]
|
[21] |
[ 张世法, 顾颖, 林锦. 气候模式应用中的不确定性分析. 水科学进展, 2010,21(4):504-511.]
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
/
〈 |
|
〉 |