Theoretical analysis of urbanization and eco-environment coupling coil and coupler control
Received date: 2019-01-05
Request revised date: 2019-11-28
Online published: 2019-12-25
Supported by
Major Program of the National Natural Science Foundation of China(41590840)
Major Program of the National Natural Science Foundation of China(41590842)
Copyright
There is an extremely complex nonlinear coupling relationship between urbanization and eco-environment. How to coordinate this relationship has become a global strategic problem and a worldwide scientific problem. First, based on theoretical analysis, this paper revealed the coupling, coupling relationship, coupling degree and coupling tower of interaction between urbanization and eco-environment. Second, by analyzing the main controlling factors, ten kinds of interaction modes between urbanization and eco-environment are summarized. Third, according to the strength of coupling degree, we have identified six coupling types, including low coupling, slight coupling, moderate coupling, high coupling, excellent coupling, and full coupling, which correspond to the random coupling, indirect coupling, loose coupling, synergistic coupling, tight coupling and control coupling, respectively. Then, urbanization and eco-environment coupling tower was formed. Finally, the theory of urbanization and eco-environment coupling coil was established. Through rotating the graph by 10°, we built 45 kinds of coupled graphs, including linear graph, index curve graph, logarithmic curve graph, double index curve graph and S-shaped curve graph. Different graphs represent different urban development modes, stages and characteristics. Among them, S-shaped curve coupled graph is optimal, and it reflects the best state of urbanization and eco-environment coupling. After that, we amplified the S-shaped coupled graph, and then constructed a coupler (UEC) based on the SD model and the complex relationship between different variables. The coupler consists of 11 regulatory elements and 201 variables, and can control the coupling state between urbanization coil and eco-environment coil. In general, the above control types include static control of multiple cities at the same time, dynamic control of a single city at different times, and dynamic control of multiple cities at different times. Through coupler control, urbanization coil and eco-environment coil can keep the best dynamic and orderly state. In addition, if one variable changes, the structure, function and simulation results of the coupler will also be affected. Finally, with the increase of control intensity, the coupler will gradually improve the coupling degree between urbanization coil and ecological environment coil.
FANG Chuanglin , CUI Xuegang , LIANG Longwu . Theoretical analysis of urbanization and eco-environment coupling coil and coupler control[J]. Acta Geographica Sinica, 2019 , 74(12) : 2529 -2546 . DOI: 10.11821/dlxb201912008
表1 耦合性的强弱类型与耦合塔结构Tab. 1 Types of coupling and structure of coupling tower |
耦合特性 | 独立性 | 关联关系 | 耦合性强弱类型 | 耦合度(%) | 耦合路径 | 在耦合塔中位置 |
---|---|---|---|---|---|---|
随性耦合 | 最强 | 最弱 | 低度耦合 | 0~10 | 自适应耦合 | 最低端 |
简接耦合 | 较强 | 较弱 | 较低耦合 | 10~30 | 自适应组织 | 低端偏上 |
松散耦合 | 一般 | 一般 | 中度耦合 | 30~50 | 自适应调控 | 中段 |
协同耦合 | 较低 | 较大 | 较高耦合 | 50~70 | 调控 | 中段偏上 |
紧密耦合 | 很差 | 很大 | 高度耦合 | 70~90 | 调控 | 顶端偏下 |
控制耦合 | 最差 | 最大 | 完全耦合 | 90~100 | 管控 | 顶端 |
表2 城镇化与生态环境耦合调控器变量统计表Tab. 2 Variables of urbanization and eco-environment coupler |
耦合器模块名称 | 耦合器变量数(个) | 耦合器变量名称 |
---|---|---|
水模块 | 41 | 用水总量指标12个(总需水量、工业需水量、生活需水量、农业需水量、生态需水量、总供水量、再生水回用量、海水淡化量、调配水资源量、本地供水量、本地水资源量、供需缺口量)、用水结构指标16个(农村生活需水量、城镇生活需水量、牲畜需水量、大牲畜需水量、大牲畜头数、小牲畜需水量、小牲畜头数、灌溉需水量、灌溉面积、林业需水量、草场需水量、渔业需水量、地表水供水量、地表水资源量、地下水供水量、地下水资源量);用水定额/系数指标13个(万元工业增加值用水量、人均农村生活用水、人均城镇生活用水、大牲畜需水定额、小牲畜需水定额、有效灌溉系数、灌溉定额、林业需水定额、草场需水定额、渔业需水定额、再生水回用率、地表水开采率、地下水开采率)。 |
经济 模块 | 21 | 经济总量/结构指标9个(GDP、第一产业增加值、第二产业增加值、第三产业增加值、社会消费品零售总额、财政总收入、进出口总额、工业增加值、全社会固定资产投资),经济均量/系数指标6个(人均GDP、科技进步对经济增长贡献率、实际利用外资影响、GDP转化成财政收入系数、经济外向度、工业增加值比重),经济增长指标6个(第一产业增加量、第一产业增长率、第二产业增加量、第二产业增长率、第三产业增加量、第三产业增长率) |
社会 模块 | 9 | 居民人均收入指标3个(国民人均可支配收入、城镇人均可支配收入、农村人均可支配收入);居民收入增长指标4个(城镇人均可支配收入增加量、城镇人均可支配收入增长系数、农村人均可支配收入增加量、农村人均可支配收入增长系数);社会发展指标2个(移动电话数、国际互联网用户数) |
人口 模块 | 23 | 人口总量/结构指标5个(总人口、城镇人口、城镇化率、农村人口、人口密度);人口变化指标10个(人口增加量、迁入人口、人口迁入率、出生人口数、人口出生率、人口减少量、迁出人口、人口迁出率、死亡人口数、人口死亡率);人口就业指标8个(从业人口、从业人口系数、第一产业从业人口、第一产业从业人口系数、第二产业从业人口、第二产业从业人口系数、第三产业从业人口、第三产业从业人口系数) |
建设用 地模块 | 28 | 建设用地指标7个(城乡建设用地面积、城镇建设用地面积、城镇人均建设用地面积、农村居民点建设用地面积、农村人均建设用地面积、交通、工矿及其他建设用地面积、公路里程);建设用地变化指标6个(城镇面积增加量、城镇面积减少量、农村居民点面积增加量、农村居民点面积减少量、交通、工矿面积增加量、交通、工矿面积减少量);土地类型转换指标15个(城镇转林地面积、城镇转草地面积、城镇转未利用地面积、城镇转水域面积、城镇转耕地面积、农村居民点转林地面积、农村居民点转草地面积、农村居民点转未利用地面积、农村居民点转水域面积、农村居民点转耕地面积、交通、工矿转林地面积、交通、工矿转草地面积、交通、工矿转未利用地面积、交通、工矿转水域面积、交通、工矿转耕地面积) |
耕地 模块 | 11 | 耕地/土地指标2个(耕地面积、土地总面积);耕地变化指标2个(耕地面积增加量、耕地面积减少量);土地类型转换指标7个(耕地转林地面积、耕地转草地面积、耕地转未利用地面积、耕地转水域面积、耕地转城镇面积、耕地转农村居民点面积、耕地转交通、工矿面积) |
生态 模块 | 38 | 生态用地/生态系统服务指标13个(生态用地面积、林地面积、草地面积、未利用地面积、水域面积、林地生态服务价值、林地生态服务价值系数、草地生态服务价值、草地生态服务价值系数、未利用地生态服务价值、未利用地生态服务价值系数、水域生态服务价值、水域生态服务价值系数);生态用地变化指标8个(林地面积增加量、林地面积减少量、草地面积增加量、草地面积减少量、未利用地面积增加量、未利用地面积减少量、水域面积增加量、水域面积减少量);土地类型转换指标17个(林地转城镇面积、林地转农村居民点面积、林地转交通、工矿面积、林地转耕地面积、草地转城镇面积、草地转农村居民点面积、草地转交通、工矿面积、草地转耕地面积、未利用地转城镇面积、未利用地转农村居民点面积、未利用地转交通、工矿面积、未利用地转耕地面积、水域转城镇面积、水域转农村居民点面积、水域转交通、工矿面积、水域转耕地面积) |
污染 模块 | 20 | 三废排放/环境状况指标11个(废水总量、工业废水排放量、生活废水排放量、工业废气排放量、固体废弃物产生量、工业固体废弃物产生量、生活垃圾产生量、城镇生活垃圾产生量、农村生活垃圾产生量、人均生活垃圾产生量、PM2.5浓度);环境治理效率指标4个(工业废水处理率、生活废水处理率、工业固体废弃物综合处理量、工业固体废弃物综合处理率);污染排放强度指标5个(工业废水排放系数、万元工业增加值废气排放量、万元工业废弃物产生量、工业SO2排放量、工业SO2排放量占比系数) |
能源 模块 | 10 | 能源消耗总量指标4个(能源消费量、工业能源消费量、生活能源消费量、碳排放总量);能源消耗均量指标6个(单位工业增加值能耗、能源消费弹性系数、人均生活能耗、人均能耗、单位GDP能耗、万元GDP碳排放量) |
合计 | 201 | - |
[1] |
|
[2] |
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis Washington DC: Island Press, 2005.
|
[3] |
|
[4] |
|
[5] |
[ 方创琳, 鲍超, 乔标 , 等. 城市化过程与生态环境效应. 北京: 科学出版社, 2008: 1-8.]
|
[6] |
[ 陈静生, 蔡运龙, 王学军 . 人类—环境系统及其可持续性. 北京: 商务印书馆, 2001: 22-25.]
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
[ 乔标, 方创琳 . 城市化与生态环境协调发展的动态耦合模型及其在干旱区的应用. 生态学报, 2005,25(11):3003-3009.]
|
[20] |
[ 李崇明, 丁烈云 . 小城镇资源环境与社会经济协调发展评价模型及应用研究. 系统工程理论与实践, 2004,24(11):134-139.]
|
[21] |
[ 廖晓昕 . 稳定性的理论、方法和应用. 武汉: 华中理工大学出版社, 1999.]
|
[22] |
|
[23] |
[ 徐学荣, 吴祖建, 张巨勇 , 等. 可持续发展通道及预警研究. 数学的实践与认识, 2003,33(2):31-37.]
|
[24] |
[ 乔标, 方创琳, 黄金川 . 干旱区城镇化与生态环境交互耦合规律性及其验证. 生态学报, 2006,26(7):2183-2190.]
|
[25] |
[
[ 方创琳 . 中国西部生态经济走廊. 北京: 商务印书馆, 2004: 78-86.]
|
[26] |
|
[27] |
|
[28] |
[ 宋言奇, 傅崇兰 . 城市化的生态环境效应. 社会科学战线, 2005(3):186-188.]
|
[29] |
[ 乔标, 方创琳, 李铭 . 干旱区城市化与生态环境交互胁迫过程研究进展及展望. 地理科学进展, 2005,24(6):31-41.]
|
[30] |
[ 方创琳, 周成虎, 顾超林 , 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径. 地理学报, 2016,71(4):531-550.]
|
[31] |
[ 方创琳 . 区域持续圈与发展圈相互作用理论. 自然辩证法研究. 1999,15(2):31-33.]
|
[32] |
|
[33] |
[ 何传启 . 新科技革命的预测和解析. 科学通报, 2017,62(8):785-798.]
|
/
〈 |
|
〉 |