Sector-Specific Spatial Statistic Model for Estimating Inter-regional Trade Flows: A Case Study of Agricultural, Chemical and Electronic Sectors in China

Expand
  • 1. Key Laboratory of Regional Sustainable Development Modeling, CAS, Beijing 100101, China;
    2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    3. Nanjing University of Information Science & Technology, Nanjing 210044, China;
    4. National Bureau of Statistics of China, Beijing 100826, China

Received date: 2011-10-18

  Revised date: 2011-11-29

  Online published: 2012-02-20

Supported by

National Natural Science Foundation of China, No.41125005, No.41101118;National Project 973, No.2012CB95570002; Knowledge Innovation Program of the Chinese Academy ofSciences, No.KACX1-YW-1001; China Postdoctor Science Foundation, No.20100480438

Abstract

Based on theories of regional interactions and competition and the gravity model, this paper first develops a sector-specific spatial statistic model to estimate inter-regional trade flows by employing a geographically weighted regression technique. The model takes into consideration sector-specific input-output relationships. That is, in some sectors there exists strong competition between regions while other sectors may need close inter-regional cooperation in terms of supply linkages. The former case results in less inter-regional trade but the latter witnesses more trade. The model also introduces the spatial lag factor of trade flows between regions. Then, the paper applies the model to estimate inter-provincial trade flows of three sample sectors, i.e., agriculture, chemistry and electronics, with data from the 2007 provincial input-output tables of China. The computing result shows that the sector-specific model can significantly increase the reliability of inter-regional trade flow estimation. It also reveals that the bandwidth of weighting function is a key factor in the sector-specific model; that is, the smaller the bandwidth, the more the trade flows. To a certain degree, the bandwidth reflects the degree of geographical concentration of economic activities while the bandwidth itself is different from sector to sector. Different sectors display different features of inter-regional trade flows. For example, agricultural trade flows are mainly from the inland provinces to the coastal ones and show strong intra-sector competition while trade flows of chemical and electronic sectors take place mainly inside the coastal regions and show an intra-sector cooperation relationship.

Cite this article

LIU Weidong, LIU Hongguang, FAN Xiaomei, CHEN Jie, TANG Zhipeng . Sector-Specific Spatial Statistic Model for Estimating Inter-regional Trade Flows: A Case Study of Agricultural, Chemical and Electronic Sectors in China[J]. Acta Geographica Sinica, 2012 , 67(2) : 147 -156 . DOI: 10.11821/xb201202001

References

[1] National Research Council. Recovering Geography. USA: National Academy of Sciences, 1997. Beijing: AcademyPress. [美国科学院国家研究理事会. 重新发现地理学. 美国科学院出版社, 1997. 北京: 学苑出版社, 2002.]
[2] Reed W E. Areal interaction in India: Commodity flows in the Bengal-Bihar industrial area. Research Papers Series,No.110. Department of Geography. Chicago: The University of Chicago, 1967.
[3] Chisholm M, O'Sullivan P. Freight Flows and Spatial Aspects of the British Economy. New York and London:Cambridge University Press, 1973.
[4] Black W R. The utility of the gravity model and estimates of its parameters in commodity flow studies. Proceedings ofthe Association of American Geographers, 1971, 3: 28-32.
[5] Black W R. Interregional commodity flows: Some experiments with the gravity model. Journal of Regional Science1972, 12: 107-118.
[6] Tinbergen J. Shaping the World Economy: Suggestions for an International Economic Policy. New York: The TwentiethCentury Fund, 1962.
[7] Poyhonen P. A tentative model for the flows of trade between countries. Weltwirtschatftliches Archiv, 1963, 90(1):93-100
[8] Frankel J A, Wei S J. Regionalization of world trade and currencies: Economics and politics//Frankel J A. TheRegionalization of the World Economy. Chicago: The University of Chicago Press, 1998: 189-219.
[9] McCallum J. National borders matter: Canada-US regional trade patterns. American Economic Review 1995, 85:615-623.
[10] Brown W M, Anderson W P. Spatial markets and the potential for economic integration between Canadian and USregions. Papers in Regional Science, 2002, 81: 99-120.
[11] Miao Changhong, Wang Haijiang. On the direction and intensity of urban economic contacts in Henan Province.Geographical Research, 2006, 25(2): 222-233. [苗长虹, 王海江. 河南省城市的经济联系方向与强度: 兼论中原城市群的形成与对外联系. 地理研究, 2006, 25(2): 222-233.]
[12] Meng Deyou, Lu Yuqi. Strength and direction of regional economic linkage in Jiangsu Province based on gravitymodel. Progress in Geography, 2009, 28(5): 697-703. [孟德友, 陆玉麒. 基于引力模型的江苏区域经济联系强度与方向. 地理科学进展, 2009, 28(5): 697-703.]
[13] Gu Chaolin, Pang Haifeng. Study on spatial relations of Chinese urban system: Gravity model approach. GeographicalResearch, 2008, 27(1): 1-12. [顾朝林, 庞海峰. 基于重力模型的中国城市体系空间联系与层域划分. 地理研究, 2008,27(1): 1-12.]
[14] Leontief W, Strout A. Multiregional Input-output Analysis//Barna T. Structural Interdependence and EconomicDevelopment. London: St. Martin's Press, 1963.
[15] Zhang Yaxiong, Zhao Kun. Interregional Input-output Analysis. Beijing: Social Sciences Academic Press (China),2006. [张亚雄, 赵坤. 区域间投入产出分析. 北京: 社会科学文献出版社, 2006.]
[16] Liu Weidong, Zhang Guoqin, Song Zhouying. Trend of spatial configuration evolvement of economic development inChina under globalization. Scientia Geographica Sinica, 2007, 27(5): 609-617. [刘卫东, 张国钦, 宋周莺. 经济全球化背景下中国经济发展空间格局的演变趋势研究. 地理科学. 2007, 27(5): 609-617.]
[17] Krugman P R, Maurice Obstfeld. International Economics: Theory and Policy. New York: Addison-Wesley, 1997.
[18] Yang Kaizhong, Feng Dengtian, Shen Tiyan. The new progress of spatial statistic econometrics. Research onDevelopment, 2009, (2): 7-13. [杨开忠, 冯等田, 沈体雁. 空间计量经济学研究的最新进展. 开发研究. 2009, (2):7-13.]
[19] Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted regression: A method for exploring spatialnonstationarity. Geographical Analysis, 1996, 28(4): 281-298.
[20] Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted regression: Modeling spatial nonstationary. TheStatistician, 1998, 47(3): 431-443.
[21] Fotheringham A S, Brunsdon C, Charlton M. Geographically weighted regression: A natural evolution of the expansionmethod for spatial data analysis. Environment and Planning A, 1998, 30(11): 1905-1927.
[22] Anselin L. New Directions in Spatial Econometrics. Berlin: Springer-Verlag, 1999.
[23] Yang Zhenshan, Cai Jianming. Progress of spatial statistics and its application in economic geography. Progress inGeography, 2010, 29(6): 757-768. [杨振山, 蔡建明. 空间统计学进展及其在经济地理研究中的应用. 地理科学进展,2010, 29(6): 757-768.]
[24] Wang Jinfeng, Li Lianfa, Ge Yong et al. A theoretic framework for spatial analysis. Acta Geographica Sinica, 2000, 55(1): 92-103. [王劲峰, 李连发, 葛咏等. 地理信息空间分析的理论体系探讨. 地理学报, 2000, 55(1): 92-103.]
[25] Fischer M M, Getis A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Berlin:Springer-Verlag, 2010: 410.
[26] LeSage J P, Pace R K. Spatial econometric modeling of origin-destination flows. Journal of Regional Science, 2008, 48(5): 941-967.
[27] LeSage J P, Pace R K. Introduction to Spatial Econometrics. London and New York: CRC Press (Taylor and FrancisGroup), 2010.
[28] Stone R. Input-Output and National Accounts. Paris: The Organization for European Economic Development, 1961.
Outlines

/