Impact of the shrinking winter wheat sowing area on agricultural water consumption in the Hebei Plain

  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-02-13

  Revised date: 2013-03-15

  Online published: 2013-05-20

Supported by

National Natural Science Foundation of China, No.41101085


This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are shown as follows. 1) The sowing areas of winter wheat in all the 11 cities in the Hebei Plain shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104 ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan Metropolitan Region, with a rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%-30%, while that of both spring maize and summer maize exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sowing area shrinkage during the study period were about 15.96×108 m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Middle Route of the South-to-North Water Diversion Project.

Cite this article

WANG Xue, LI Xiubin, XIN Liangjie . Impact of the shrinking winter wheat sowing area on agricultural water consumption in the Hebei Plain[J]. Acta Geographica Sinica, 2013 , 68(5) : 694 -707 . DOI: 10.11821/xb201305010


[1] Yang Y H, Watanabe M, Zhang X Y et al. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agricultural Water Management, 2006, 82: 25-44.

[2] Zhang Zhaoji, Fei Yuhong, Chen Zongyu et al. Evaluation of the Groundwater Sustainable Utilization and Survey in the North China Plain. Beijing: Geological Publishing House, 2009: 1-9.[张兆吉, 费宇红, 陈宗宇等. 华北平原地下水可 持续利用调查评价. 北京: 地质出版社, 2009: 1-9.]

[3] Chen J Y, Tang C Y, Shen Y J et al. Use of water balance calculation and tritium to examine the dropdown of groundwater table in the piedmont of the North China Plain (NCP). Environmental Geology, 2003, 44: 564-571.

[4] Hu Chunsheng, Cheng Yisong. National Ecosystem Positioning Observation and Research Dataset: Field Ecosystem Volume, Hebei Luancheng Station (1998-2008). Beijing: China Agriculture Press: 137-149.[胡春胜, 程一松. 中国生态系统定位观测与研究数据集: 农田生态系统卷, 河北栾城站(1998-2008). 北京: 中国农业出版社, 2011: 137-149.]

[5] Xu Yueqing. Impact analysis of land use on groundwater level drawdown: A case study of the Hebei Plain. Geographical Research, 2005, 24(2): 222-228.[许月卿. 土地利用对地下水位下降的影响: 以河北平原为例. 地理研 究, 2005, 24(2): 222-228.]

[6] Li Chunqiang, Li Baoguo, Hong Keqin. Trend of crop water requirement in recent 35 years in Hebei Province. Chinese Journal of Eco-Agriculture, 2009, 17(2): 359-363.[李春强, 李保国, 洪克勤. 河北省近35 年农作物需水量变化趋势分 析. 中国生态农业学报, 2009, 17 (2): 359-363.]

[7] Zhang Guanghui, Liu Zhongpei, Fei Yuhong et al. The relationship between the distribution of irrigated crops and the supply capability of regional water resources in North China Plain. Acta Geoscientica Sinica, 2010, 31(1): 17-22.[张光 辉, 刘中培, 费宇红等. 华北平原区域水资源特征与作物布局结构适应性研究. 地球学报, 2010, 31(1): 17-22.]

[8] Cheng Weixin. Field Evaporation and Crop Water Consumption Research. Beijing: China Meteorological Press, 1994: 82-127.[程维新. 农田蒸发与作物耗水量研究. 北京: 气象出版社, 1994: 82-127.]

[9] Chen Chao, Yu Qiang, Wang Enli et al. Modeling the spatial distribution of crop water productivity in the North China Plain. Resources Science, 2009, 31(9): 1477-1485.[陈超, 于强, 王恩利等. 华北平原作物水分生产力区域分异规律模 拟. 资源科学, 2009, 31(9): 1477-1485.]

[10] Feng Z M, Liu D W, Zhang Y H. Water requirements and irrigation scheduling of spring maize using GIS and CropWat model in Beijing-Tianjin-Hebei region. Chinese Geographical Sciences, 2007, 17(1): 56-63.

[11] Kong F L, Cai W T, Shi L G et al. The Characteristics of annual water consumption for winter wheat and summer maize in North China Plain. Procedia Engineering, 2012, 28: 376-381.

[12] Liu Cangming, Zhou Changqing, Zhang Shifeng et al. Study on water production function and efficiency of wheat. Geographical Research, 2005, 24(1): 1-10.[刘昌明, 周长青, 张士锋等. 小麦水分生产函数及其效益的研究. 地理研 究, 2005, 24(1): 1-10.]

[13] Singh R, Dam J C, Feddes R A. Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management, 2006, 82: 253-278.

[14] Sun H Y, Liu C M, Zhang X Y et al. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 2006, 85: 211-218.

[15] Mo Xingguo, Xue Ling, Lin Zhonghui. Spatial-temporal distribution of crop evapotranspiration from 1981-2001 over the North China Plain. Journal of Natural Resources, 2005, 20(2): 181-188.[莫兴国, 薛玲, 林忠辉. 华北平原 1981-2001 年作物蒸散量的时空分异特征.自然资源学报, 2005, 20(2): 181-188.]

[16] Li H J, Zhang L, Lei Y P et al. Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology. Agricultural Water Management, 2008, 95: 1271-1278.

[17] Wang T, Lv C H, Yu B H. Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region. Journal of Geographical Sciences, 2011, 21(4): 677-688.

[18] Fang Xiaoquan, Wang Jianlin, Yu Shunzhang. Water-saving potential and irrigation strategies for wheat-maize double cropping system in the North China Plain. Transactions of the CSAE, 2011, 27(7): 37-44.[房全孝, 王建林, 于舜章. 华 北平原小麦—玉米两熟制节水潜力与灌溉对策. 农业工程学报, 2011, 27(7): 37-44.]

[19] Liu Xiaoying, Li Yuzhong, Hao Weiping. Trend and causes of water requirement of main crops in North China in recent 50 years. Transactions of the CSAE, 2005, 21(10): 155-159.[刘晓英, 李玉中, 郝卫平. 华北主要作物需水量近 50 年变化趋势及原因. 农业工程学报, 2005, 21(10): 155-159.]

[20] Liu Yu, Wang Lin, Ni Guangheng et al. Spatial distribution characteristics of irrigation water requirement for main crops in China. Transactions of the CSAE, 2009, 25(12): 6-12.[刘钰, 汪林, 倪广恒等. 中国主要作物灌溉需水量空 间分布特征. 农业工程学报, 2009, 25(12): 6-12.]

[21] Sander J Z, Wim G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 2004, 69: 115-133.

[22] Allen R G, Pereira L S, Raes D et al. Crop Evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No.56, Rome: FAO-Food and Agriculture Organization Press, 1998: 23-27; 97-134.

[23] Liu Yu, Pereira L S. Validation of FAO methods for estimating crop coefficients. Transactions of the CSAE, 2000, 16 (5): 26-30.[刘钰, Pereira L S. 对FAO推荐的作物系数计算方法的验证. 农业工程学报, 2000, 16(5): 26-30.]

[24] Chen Bo, Ouyang Zhu. Prediction of winter wheat evapotranspiration based on BP neural networks. Transactions of the CSAE, 2010, 26(4): 81-86.[陈博, 欧阳竹. 基于BP 神经网络的冬小麦耗水预测. 农业工程学报, 2010, 26(4): 81-86.]

[25] Chen Yumin. Crop Water Requirement and Irrigation of the Major Crops in China. Beijing: China Water Conservancy and Electricity Press, 1995: 14-57.[陈玉民. 中国主要作物需水量与灌溉. 北京: 中国水利水电出版社, 1995: 14-57.]

[26] Allen R G, Smith M, Pereira L S et al. An Update for the calculation of reference evapotranspiration. ICID Bulletin,1994, 43(2): 35-92.

[27] Dastane N G. Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Paper No.25. New York, 1974: 1-10.

[28] Liu Zhandong, Duan Aiwang, Xiao Junfu et al. Research progress on calculation methods of effective rainfall growing period on dry crop. Journal of Irrigation and Drainage, 2007, 26(3): 27-31.[刘战东, 段爱旺, 肖俊夫等. 旱作物生育 期有效降水量计算模式研究进展. 灌溉排水学报, 2007, 26(3): 27-31.]

[29] Liu Yu, Cai Jiabing, Cai Lingen et al. Analysis of irrigation scheduling and water balance for an irrigation district at lower reaches of the Yellow River. Journal of Hydraulic Engineering, 2005, 36(6): 701-708.[刘钰, 蔡甲冰, 蔡林根 等. 黄河下游灌区农田灌溉制度与供需平衡分析. 水利学报, 2005, 36(6): 701-708.]

[30] Kuang Wenhui, Liu Jiyuan, Lu Dengsheng. Pattern of impervious surface change and its effect on water environment in the Beijing-Tianjin-Tangshan metropolitan area. Acta Geographica Sinica, 2011, 66(11): 1486-1496.[匡文慧, 刘纪 远, 陆灯盛. 京津唐城市群不透水地表增长格局以及水环境效应. 地理学报, 2011, 66(11): 1486-1496.]

[31] Tang Guoan, Yang Xin. ArcGIS Geographic Information Systems Spatial Analysis Experimental Course. 2nd ed. Beijing: Science Press, 2012: 450-453.[汤国安, 杨昕. ArcGIS 地理信息系统空间分析实验教程. 2 版. 北京: 科学出 版社, 2012: 450-453.]

[32] Wang Jing, Pang Huancheng, Ren Tianzhi et al. Study on agricultural water coordination of supply and demand of main crops in irrigation area of Huanghuaihai region. Journal of Irrigation and Drainage, 2010, 29(5): 106-109.[王婧, 逄焕成, 任天志等. 黄淮海地区主栽作物水分供需平衡分析. 灌溉排水学报, 2010, 29(5): 106-109.]