A Review on Uncertainty Analysis of Large-scale Hydrological Cycle Modeling System

Expand
  • 1. School of Resource and Geoscience, China University of Mining & Technology, Xuzhou 221008, Jiangsu, China;
    2. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2010-10-18

  Revised date: 2010-12-07

  Online published: 2011-03-20

Supported by

National Key Basic Research Program of China (973 Program), No.2010CB428403; National Grand Science and Technology Special Project of Water Pollution Control and Improvement, No.2009ZX07210-006

Abstract

The uncertainties in hydrological modelling come from four major sources: uncertainties in input data and parameters, uncertainties in model structure, uncertainties in analysis method and the initial and boundary conditions. Much attention has been paid to the uncertainty issues in hydrological modelling due to their great effects on prediction, and also many methods are applied to uncertainty quantification in the hydrological model. In this paper, we reviewed the recent advances on the uncertainty analysis approaches in the large-scale complex hydrological model, such as, large-scale hydrological system coupled with the land-atmosphere model. And then the PSUADE and its uncertainty quantification method were introduced, which will be a useful tool and platform for integration research in uncertainty analysis of large complex hydrological models.

Cite this article

SONG Xiaomeng, ZHAN Chesheng, KONG Fanzhe, XIA Jun . A Review on Uncertainty Analysis of Large-scale Hydrological Cycle Modeling System[J]. Acta Geographica Sinica, 2011 , 66(3) : 396 -406 . DOI: 10.11821/xb201103012

References

[1] Chen T H, Henderson S A, Milly P. Cabauw experimental results from the project or intercomparison of land-surface parameterization scheme. Journal of Climate, 1997, 10: 1194-1215.

[2] Lohmann D, Lettenmaier D P, Liang X. The project for intercomparison of land-surface parameterization schemes (PLIPS) phase Red-Arkansas River basin experiment. Global and Planetary Change, 1998, 19: 161-179.

[3] Shao Y, Henderson S A. Validation of soil moisture simulation in land surface parameterization schemes with HAPEX data. Global and Planetary Change, 1996, 13: 11-46.

[4] Yong Bin, Ren Liliang. Development of a large-scale hydrological model TOPX and its coupling with regional intergrated environment modeling system RIEMS. Chinese Journal of Geophysics, 2009, 52(8): 1954-1965. [雍斌, 任立良. 大尺度模型TOPX构建及其在区域环境系统模式RIEMS的耦合. 地球物理学报, 2009, 52(8): 1954-1965.]

[5] Ye Shouze, Xia Jun. Century's retrospect and looking into the future of hydrological science. Advances in Water Sciences, 2002, 13(1): 93-104. [叶守则, 夏军. 水文科学研究的世纪回眸与展望. 水科学进展, 2002, 13(1): 93-104.]

[6] Renard B, Kavetski D, Kuczera G et al. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors.Water Resources Research, 2010, 46,W05521, 22PP, doi: 10.1029/2009WR008328.

[7] Li L, Xia J, Xu C Y et al. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. Journal of Hydrology, 2010, 390(3/4): 210-221.

[8] Liang Zhongmin. A review of hydrological uncertainty analysis based on Bayesian theory. Advances in Water Science, 2010, 21(2): 274-281. [梁忠民. 基于贝叶斯理论的水文不确定性分析研究进展. 水科学进展, 2010, 21(2): 274-281.]

[9] Kavetski D, Kuczera G, Frank S W et al. Bayesian analysis of input uncertainty in hydrological modeling: I. Theory. Water Resources Research, 2006, 42,W03407, doi: 10.1029/2005WR004368.

[10] Kavetski D, Kuczera G, Frank S W et al. Bayesian analysis of input uncertainty in hydrological modeling: II. Application. Water Resources Research, 2006, 42,W03408, doi:10.1029/2005WR004376.

[11] Thiemann M, Trosset M, Gupta H et al. Bayesian recursive parameter estimation for hydrologic models. Water Resources Research, 2001, 37(10): 2521-2535.

[12] Engeland K, Xu C Y, Gottschalk L et al. Assessment uncertainties in a conceptual water balance model using Basyesian methodology. Hydrological Sciences Journal, 2005, 50(1): 45-63.

[13] Beven K J, Binley A M. The future of distributed hydrological models. Hydrological Processes, 1992, 6: 279-298.

[14] Beven K J, Freer J Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems. Journal of Hydrology, 2001, 249: 11-29.

[15] Shu Chang, Liu Suxia, Mo Xingguo et al. Uncertainty analysis of Xin'anjiang model parameter. Geographical Research, 2008, 27(2): 343-352. [舒畅, 刘苏峡, 莫兴国等. 新安江模型参数的不确定性分析. 地理研究, 2008, 27(2): 343-352.]

[16] Montanari A. Large sample behaviors of the generalized likelihood uncertainty estimate (GLUE) in assessing the uncertainty of the rainfall-runoff simulations.Water Resources Research, 2005, 41(8):W08406.

[17] Blasone R S, Vrugt J A. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances inWater Resources, 2008, 31: 630-648.

[18] Wei Xiaojing, Xiong Lihua, Wan Min et al. Application of Markov Chain Monte Carlo method based modified generalized likelihood uncertainty estimation to hydrological models. Journal of Hydraulic Engineering, 2009, 40(4): 464-473. [卫晓婧, 熊立华, 万民等. 融合马尔科夫链—蒙特卡洛算法的改进通用似然不确定性估计方法在流域水型中的应用. 水利学报, 2009, 40(4): 464-473.]

[19] Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 1999, 35(9): 2739-2750.

[20] Kuczera G, Kavetski D, Franks S et al. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. Journal of Hydrology, 2006, 331, 167-177.

[21] Thyer M, Renard B, Kavetski D et al. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling.Water Resources Research, 2009, 45,W00B14, doi: 10.1029/2008WR006825.

[22] Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The metropolis algorithm. Journal of Hydrology, 1998, 221(1-4): 69-85.

[23] Ajami N K, Duan Q Y, Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework. Water Resources Research, 2007, 43,W01403, doi: 10.1029/2005WR004745.

[24] Cheng Chuntian, Li Xiangyang. A parallel adaptive metropolis algorithm for uncertainty assessment of Xinanjiang model parameters. Engineering Sciences, 2007, 9(9): 47-51. [程春田, 李向阳. 三水源新安江模型参数不确定性分析PAM. 中国工程科学, 2007, 9(9): 47-51.]

[25] Vrugt J A, Robinson B A. Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging.Water Resources Research, 2007, 43(1):W01411, doi: 10.1029/2005WR004838.

[26] Vrugt J A, Gupta H V, Bouten W et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models.Water Resources Research, 2003, 39(8): 1214, doi: 10.1029/2002WR001746.

[27] Huang Y, Chen X, Li Y P et al. A fuzzy-based simulation method for modeling hydrological processes under uncertainty. Hydrological Processes, 2010, 24(25): 3718-3732.

[28] Montanari A, Brath A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 2004, 40,W01106, doi: 10.1029/2003WR002540.

[29] Yu Zhongbo. Principle and Application of Watershed Distributed Hydrological Model. Beijing: Science Press, 2008. [余. 流域分布式水文学原理及应用. 北京: 科学出版社, 2008.]

[30] Reichle R H, Mclaughlin D B, Entekhabi D. Hydrologic data assimilation with the ensemble kalman filter. Monthly Weather Review, 2002, 130: 103-114.

[31] Koren V, Lee H, Seo D. Reducing uncertainties in model initial conditions via variational assimilation of hydrologic and hydrometeorological data into distributed hydrologic models. American Geophysical Union, Fall Meeeting 2009, abstract#H41F-0961.

[32] Kotlarski S, Block A, B?hm U et al. Regional climate model simulations as input for hydrological applications: evaluation of uncertainties. Advances in Geosciences, 2005, 5: 119-125.

[33] Ni G H, Wang L, Hu H P. Identification of uncertainty of a physically-based Hydrological model. The 2nd Asia Pacific Association of Hydrology andWater Resources (APHW), 2004, 2: 633-640.

[34] Butts M B, Payne J T, Kristensen M et al. An evaluation of the impact of model structure on hydrological modeling uncertainty for streamflow simulation. Journal of Hydrology, 2004, 298: 242-266.

[35] Lin Z, Beck B. Error and uncertainty in the structure of a model: Propagating into forecasts. American Geophysical Union, Fall Meeeting 2009, abstract#H23L-07.

[36] Lakhtakia M N, Yarnal B, Johnson D L et al. A simulation of river-basin response to mesoscale meterological forcing: The Susquehanna river basin experiment (SRBEX). Journal of AmericanWater Resources Association, 1998, (43): 921-937.

[37] Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. MonthlyWeather Review, 2001, 129: 569-585.

[38] Pappenberger F, Cloke H L, Balsamo G et al. Global runoff routing with the hydrological component of the ECMWF NWP system. International Journal of Climatology, 2009, doi: 10.1002/joc.2028.

[39] Hossain F, Anagnostou E N. Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncertainty analysis of hydrologic models. Computers & Geosciences, 2005, 31: 497-512.

[40] Duan Q, Ye A, Dai Y. Quantification of parameter uncertainty of the common land model (CoLM). American Geophysical Union, Fall Meeeting 2009, abstract#H41F-0968.

[41] Su Fengge. Study on the macro-scale hydrological model and its coupling with the land surface processes model. Nanjing: Hohai University, 2001. [苏凤阁.大尺度水文模型及其与陆面模式的耦合研究[D]. 南京: 河海大学, 2001.]

[42] Fernando T M K G, Maier H R, Dandy G C et al. Assessing prediction uncertainty in the BIGMOD model: A shuffled complex evolution metropolis algorithm approach//Oxley L, Kulasiri D. MODSIM 2007 International Congress on Modeling and Simulation. Modeling and Simulation Society of Australia and New Zealand, December 2007: 1499-1505.

[43] Liang Xiao. Application of Gaussian error propagation principles for assessment of uncertainty in the common land model [D]. Beijing: Beijing Normal University, 2008. [梁晓. 高斯误差传播原理在评估通用陆面模型不确定性中的初探[D]. 北京: 北京师范大学, 2008.]

[44] Bastidas L A, Gupta H V, Sorooshian S et al. Sensitivity analysis of a land surface scheme using multicriteria methods. Journal of Geophysical Research, 1999, 104: 19481-19490.

[45] Bijlsma R M, Groenendijk P. Uncertainty analysis at large scales.Water Science & Technology, 2007, 56(6): 1-9.

[46] Hou D, Mitchell K, Toth Z et al. The effect of large-scale atmospheric uncertainty on streamflow predictability. Journal of Hydrometeorology, 2009, 10(3): 717-733.

[47] Yong Bin. Development of land-surface hydrological model TOPX and its coupling study with regional climate model RIEMS [D]. Nanjing: Nanjing University, 2007. [雍斌. 陆面水文过程模型TOPX构建及其与区域气候模式RIEMS合应用[D]. 南京: 南京大学, 2007.]

[48] Gao Yanhong, Chen Guodong, Cui Wenrui. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its implement in Heihe River Basin. Advances in Earth Science, 2006, 21(12): 1283-1293. [高艳红, 程国栋, 瑞. 陆面水文过程与大气模式的耦合及其在黑河流域的应用. 地球科学进展, 2006, 21(12): 1283-1293.]

[49] Tong C, Graziani F. A practical global sensitivity analysis methodology for multi-physics applications. Computational methods in transport. Lecture Notes in Computational Science and Engineer, 2008, 62: 277-299.

[50] Hsieh H. Application of the PSUADE tool for sensitivity analysis of an engineering simulation. UCRL-TR-237205. https://e-reports-ext.llnl.gov/pdf/355680.pdf, 2007.

[51] Tong C. Quantifying uncertainty of a soil-foundation structure-interaction system under seismic excitation. UCRL-TR-402883. https://e-reports-ext.llnl.gov/pdf/359763.pdf, 2008.

[52] Wemhoff A P, Hsieh H. TNT prout-tompkins kinetics calibration with PSUADE. UCRL-TR-230194. https://e-reports-ext.llnl.gov/pdf/346278.pdf, 2007.

[53] Yong Bin. Advances in the coupling study of hydrological models and land-surface models. Journal of Glaciology and Geocryology, 2006, 28(6): 961-970. [雍斌. 水文模型与陆面模式耦合研究进展. 冰川冻土, 2006, 28(6): 961-970.]

[54] Yin Xiongrui, Xia Jun, Zhang Xiang et al. Recent progress and prospect of the study on uncertainties in hydrological modeling and forecasting. Water Power, 2006, 32(10): 27-31. [尹雄锐, 夏军, 张翔等. 水文模拟与预测中的不确定性现状与展望. 水力发电, 2006, 32(10): 27-31.]
Outlines

/