Evolution of spatio-temporal association structure of urban potential at county level in the Pearl River Delta

  • School of Geography, South China Normal University, Guangzhou 510631, China

Received date: 2013-07-19

  Revised date: 2013-12-26

  Online published: 2014-04-20

Supported by

National Natural Science Foundation of China, No.41001078


Based on the road network data of 1990, 1994, 2000, 2005 and 2009 and urban integrated power index measured by factor analysis in the Pearl River Delta, this paper estimates county potential index using expanded potential model, and explores the spatio-temporal association structure and evolution of county potential using spatio-temporal autocorrelation techniques, and the validity of spatio-temporal association structure is verified in comparison of spatial association pattern and cross correlation function. The main results are obtained as follows: (1) The global spatio-temporal association of county potential showed a positive effect. But this positive effect was not strong, and it increased slowly from 1994 to 2005 and presented a decreasing trend from 2005 to 2009. The local spatio-temporal association characteristics of most counties' potential kept relatively stable and focused on a positive autocorrelation, however, there were obvious transformations in some counties among four types of local spatio-temporal association which are HH, LL, HL and LH. (2) The distribution difference and its change of local spatio-temporal association types of county potential were obvious. Spatio-temporal HH type units were located in the central zone and Shenzhen-Dongguan region of the eastern zone, but the coverage of the spatio-temporal HH area of the central zone shrunk to the Guangzhou-Foshan core metropolitan region only after 2000; the spatio-temporal LL area in the western zone kept relatively stable with a surface-shaped continuous distribution pattern, new LL type units began to emerge in the central and southern zones in 2005, the LL area in the eastern zone expanded from 1994 to 2000, and then gradually shrunk and scattered at the eastern edge in 2009; the spatiotemporal heterogeneity (HL and LH) area changed significantly. (3) The diversity of local spatiotemporal association of county potential among the three zones showed significant imbalance. The difference between the eastern and central zones tended to decrease, whereas that between the western zone and the central and eastern zones further expanded. (4) Spatio-temporal autocorrelation methods can efficiently mine the spatio-temporal association patterns of county potential, and can better reveal the complicated spatio-temporal interaction between counties than ESDA methods.

Cite this article

MEI Zhixiong, XU Songjun, OUYANG Jun . Evolution of spatio-temporal association structure of urban potential at county level in the Pearl River Delta[J]. Acta Geographica Sinica, 2014 , 69(4) : 497 -509 . DOI: 10.11821/dlxb201404006


[1] Ma Ronghua, Pu Yingxia, Ma Xiaodong. Mining Spatial Association Patterns from GIS Database. Beijing: Science Press, 2007. [马荣华, 蒲英霞, 马晓冬. GIS空间关联模式发现. 北京: 科学出版社, 2007.]
[2] Cliff A D, Ord J K. Spatial Processes, Models and Applications. London: Pion, 1981.
[3] Baddeley A, Meller J, Waagepetersen R. Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 2000, 54 (3): 329-350.
[4] Diggle P J, Gómez-Rubio V, Brown P E et al. Second-order analysis of inhomogeneous spatial point processes using casecontrol data. Biometrics, 2007, 63(2): 550-557.
[5] Sun Tieshan, Li Guoping, Lu Minghua. Concentration and decentralization of population in the Beijing-Tianjing-Hebei metropolitan region and its determinants: A regional density function approach. Acta Geographica Sinica, 2009, 64(8): 956-966. [孙铁山, 李国平, 卢明华.京津冀都市圈人口集聚与扩散及其影响因素:基于区域密度函数的实证研究. 地 理学报, 2009, 64(8): 956-966.]
[6] Yuan Feng, Wei Yehua, Chen Wen et al. Spatial agglomeration and new firm formation in the information and communication technology industry in Suzhou. Acta Geographica Sinica, 2010, 65(2): 153-163. [袁丰, 魏也华, 陈雯 等. 苏州市区信息通讯企业空间集聚与新企业选址. 地理学报, 2010, 65(2): 153-163.]
[7] Zheng Feng, Yu Yang, Wang Xia et al. The spatial agglomeration characteristics of automotive service industry: A case study of Nanjing. Scientia Geographica Sinica, 2012, 32(10): 1200-1208. [甄峰, 余洋, 汪侠等. 城市汽车服务业空间集 聚特征研究:以南京市为例. 地理科学, 2012, 32(10): 1200-1208.]
[8] Dallerba S. Distribution of regional income and regional funds in Europe 1989-1999: An exploratory spatial data analysis. Annals of Regional Science, 2005, 39(1): 121-148.
[9] Patacchini E, Rice P. Geography and economic performance: Exploratory spatial data analysis for Great Britain. Regional Studies, 2007, 41(4): 489-508.
[10] Ma Xiaodong, Ma Ronghua, Xu Jiangang. Spatial structure of cities and towns with ESDA-GIS framework. Acta Geographica Sinica, 2004,59 (6): 1048-1057. [马晓冬, 马荣华, 徐建刚. 基于ESDA-GIS 的城镇群体空间结构. 地理学 报, 2004, 59(6): 1048-1057.]
[11] Chen Gangqiang, Li Xun, Xu Xueqiang. Spatial agglomeration and evolution of urban population in China. Acta Geographica Sinica, 2008, 63(10): 1045-1054. [陈刚强, 李郇, 许学强. 中国城市人口的空间集聚特征与规律分析. 地 理学报, 2008, 63(10): 1045-1054.]
[12] Long Kaisheng, Zhao Yali, Zhang Honghui et al. Spatial difference and its influencing factors in ecological land rent in China. Acta Geographica Sinica, 2012, 67(8): 1125-1136. [龙开胜, 赵亚莉, 张鸿辉等. 中国生态地租空间分异及 其影响因素分析. 地理学报, 2012, 67(8): 1125-1136.]
[13] Wan Luhe,Wang Shaowei, Chen Xiaohong. GeoDA-based spatial correlation analysis of GDP in Hadaqi industrial corridor. Geographical Research, 2011, 30(6): 977-984. [万鲁河, 王绍巍, 陈晓红. 基于GeoDA 的哈大齐工业走廊 GDP空间关联性. 地理研究, 2011, 30(6): 977-984.]
[14] Cai Fangfang, Pu Lijie, Zhang Jian et al. Identification of spatial economic structure in Jiangsu Province by applying exploratory spatial data analysis. Economic Geography, 2012, 32(3): 22-28. [蔡芳芳, 濮励杰, 张健等. 基于ESDA的 江苏省县域经济发展空间模式解析. 经济地理, 2012, 32(3): 22-28.]
[15] Cliff A D, Ord J K. Space-time modelling with an application to regional forecasting. Transactions of the Institute of British Geographers, 1975, 64: 119-128.
[16] Wang Jinfeng. Spatial Analysis. Beijing: Science Press, 2006. [王劲峰. 空间分析. 北京: 科学出版社, 2006.]
[17] Wang Jiaqiu. Space-time series data analysis and modelling [D]. Guangzhou: Sun Yat-Sen University, 2008. [王佳璆. 时空序列分析与建模[D]. 广州: 中山大学, 2008.]
[18] Martin R L, Oeppen J E. The identification of regional forecasting models using space-time correlation functions. Transactions of the Institute of British Geographers, 1975, 66: 95-118.
[19] Pfeifer P E, Deutsch S J. A three-stage iterative procedure for space-time modeling. Technometrics, 1980, 22(1): 35-47.
[20] Reynolds K M, Madden L V. Analysis of epidemics using spatio-temporal autocorrelation. Phytopathology, 1988, 78 (2): 240-246.
[21] Cressie N, Majure J J. Spatio-temporal statistical modeling of livestock waste in streams. Journal of Agricultural, Biological and Environmental Statistics, 1997, 2(5): 20-28.
[22] Kelly R P, Barry R, Clapp J et al. Spatio-temporal autoregressive models of neighborhood effects. Journal of Real Estate Economics, 1998, 17(1): 15-33.
[23] Kamarianakis Y, Prastacos P. Space-time modeling of traffic flow. Computers & Geosciences, 2005, 31: 119-133.
[24] Griffith D A. Space, time, and space-time eigenvector filter specifications that account for autocorrelation. Estadistica Española, 2012, 54: 7-34.
[25] López H F A, Chasco Y C. Time-trend in spatial dependence: specification strategy in the first-order spatial autoregressive model. Estudios de Economía Aplicada, 2007, 25(2): 631-650.
[26] Hardisty F, Klippel A. Analysing spatio-temporal autocorrelation with LISTA-Viz. International Journal of Geographical Information Science, 2010, 24(10): 1515-1526.
[27] Cheng T, Haworth J, Wang J Q. Spatio-temporal autocorrelation of road network data. Journal of Geographical Systems, 2012, 4: 389-413.
[28] Han Weiguo, Wang Jinfeng, Gao Yige et al. Forecasting and analysis of regional traffic flow in space and time. Journal of Highway and Transportation Research and Development, 2007, 24(6): 92-96. [韩卫国, 王劲峰, 高一鸽等. 区域交通流的时空预测与分析. 公路交通科技, 2007, 24(6): 92-96.]
[29] Zhao Ling, Wang Jiaqiu, Deng Min et al. Spatial-temporal autocorrelation model of road network based on travelling time. Journal of Central South University: Science and Technology, 2012, 43(10): 4114-4122. [赵玲, 王佳璆, 邓敏等. 基于行车时间的道路网络时空自相关模型研究. 中南大学学报: 自然科学版, 2012, 43(10): 4114-4122.]
[30] Chen Shaokuan, Wei Wei, Mao Baohua et al. Analysis on urban traffic status based on improved spatio-temporal Moran's I. Acta Physica Sinica, 2013, 62(14): 527-533. [陈绍宽, 韦伟, 毛保华等. 基于改进时空Moran's I 指数的道 路交通状态特征分析. 物理学报, 2013, 62(14): 527-533.]
[31] Xu Xueqiang, Zhou Yixing, Ning Yuemin. Urban Geography. Beijing: Higher Education Press, 2003. [许学强, 周一星, 宁 越敏. 城市地理学. 北京: 高等教育出版社, 2003.]
[32] Chen Qunyuan, Song Yuxiang. Methods of dividing the boundary of urban agglomerations: Chang-Zhu-Tan urban agglomeration as a case. Scientia Geographica Sinica, 2010, 30(5): 660-666. [陈群元, 宋玉祥. 城市群空间范围的综合 界定方法研究: 以长株潭城市群为例. 地理科学, 2010, 30(5): 660-666.]
[33] Gu Chaolin, Pang Haifeng. Study on spatial relations of Chinese urban system: Gravity model approach. Geographical Research, 2008, 27(1): 1-12. [顾朝林, 庞海峰. 基于重力模型的中国城市体系空间联系与层域划分. 地理研究, 2008, 27(1): 1-12.]
[34] Box G, Jenkins G. Time Series Analysis: Forecasting and Control. San Francisco: Wiley, 1976: 256-268.
[35] Yue Y, Yeh A G O. Spatio-temporal traffic-flow dependency and short-term traffic forecasting. Environment and Planning B, 2008, 35(5): 762-771.
[36] Mei Zhixiong, Xu Songjun, Ouyang Jun et al. Spatio-temporal evolvement of spatial interaction among cities of Zhujiang River Delta in recent 20 years. Scientia Geographica Sinica, 2012, 32(6): 694-701. [梅志雄, 徐颂军, 欧阳军 等. 近20 年珠三角城市群城市空间相互作用时空演变. 地理科学, 2012, 32(6): 694-701.]