Climate Changes in the Tibetan Plateau during the Last Three Decades

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Institute of Tibetan Plateau Research, CAS, Beijing 100085, China;
    3. Graduate School of the Chnese Academy of Sciences, Beijing 100039, China

Received date: 2004-08-09

  Revised date: 2004-10-25

  Online published: 2005-01-25

Supported by

National Natural Science Foundation of China, No.40171040; Key Project of National Natural Science Foundation of China, No.40331006

Abstract

The Tibetan Plateau is one of the best places to study global climate change. Aridity or humidity status of land surface is an important outcome that has close relations with a set of climatic factors such as precipitation, temperature, solar radiation, relative humidity and wind, but the relationship between them is complicated. This paper calculated potential evapotranspiration by applying Penman-Monteith model which was recommended by FAO in 1998, and aridity index by Vyshotskii model to indicate aridity or humidity status of the Tibetan Plateau during the period 1971-2000. Then it analyzed the changing trends of observed climatic factors (temperature and precipitation) and calculated factors (potential evapotranspiration and aridity index), and showed the spatial distribution of aridity/humidity status over the Tibetan Plateau during the period 1971-2000. Trends calculated by linear regression were tested through Mann-Kendall test. Results of 77 meteorological stations on the Tibetan Plateau showed that the main trends of climate change are temperature rise and precipitation increase; potential evapotranspiration decrease and most of the areas was ascending to more humid status. Results suggested that aridity or humidity status cannot be presented only with precipitation.

Cite this article

WU Shaohong, YIN Yunhe, ZHENG Du, YANG Qinye . Climate Changes in the Tibetan Plateau during the Last Three Decades[J]. Acta Geographica Sinica, 2005 , 60(1) : 3 -11 . DOI: 10.11821/xb200501001

References


[1] IPCC. Climate Change 2001: Impacts, Adaptation & Vulnerability. Cambridge: Cambridge University Press, 2001. 1-18.

[2] Shi Yafeng. An Assessment of the Issues of Climatic Shift from Warm-dry to Warm-wet in Northwest China. Beijing: China Meteorological Press, 2003. 17-25.
[施雅风. 中国西北气候由暖干向暖湿转型问题评估. 北京: 气象出版社, 2003. 17-25.]

[3] Li Gelin, Xu Yuan, Qian Weihong. Dry and wet climate changes of Western China in recent 300 years. Plateau Meteorology, 2003, 22(4): 371-377.
[李弋林, 徐袁, 钱维宏. 近300年来中国西部气候的干湿变化. 高原气象, 2003, 22(4): 371-377.]

[4] Ci Longjun, Yang Xiaohui, Chen Zhongxin. The potential impacts of climate change scenarios on desertification in China. Earth Science Frontiers, 2002, 9(2): 287-294.
[慈龙骏, 杨晓晖, 陈仲新. 未来气候变化对中国荒漠化的潜在影响. 地学前缘, 2002, 9(2): 287-294.]

[5] Zhang Liping, Zhang Ruibo. Development coordination for eco-environment rehabilitation with world climatic variation in Northwest China. Research of Soil and Water Conservation, 2003, 10(4): 120-123.
[张丽萍, 张锐波. 全球气候变化趋势下西北生态环境建设的动态响应. 水土保持研究, 2003, 10(4): 120-123.]

[6] Huang Bingwei. Draft of the complex physical geographical division of China. Chinese Science Bulletin, 1959, 18: 594-602.
[黄秉维. 中国综合自然区划草案. 科学通报, 1959, 18: 594-602.]

[7] Zheng Du. A study on the physico-geographical regional system of the Tibetan Plateau. Science in China (Ser. D), 1999, 26(4): 336-341.
[郑度. 青藏高原自然地域系统研究. 中国科学 (D辑), 1999, 26(4): 336-341.]

[8] Zheng Du, Li Bingyuan. Progress in studies on geographical environments of the Tibetan Plateau. Scientia Geographica Sinica, 1999, 19(4): 295-302.
[郑度, 李炳元. 青藏高原地理环境研究进展. 地理科学, 1999, 19(4): 295-302.]

[9] Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: a driver and amplifier of the global climatic change. Journal of Lanzhou University (Natural Sciences), 1996, 32(1): 108-115.
[潘保田, 李吉均. 青藏高原——全球气候变化的驱动机与放大器. 兰州大学学报 (自然科学版), 1996, 32(1): 108-115.]

[10] Bi Siwen. A best laboratory of the universal research for the earth's global change and earth system science-the Qinghai-Tibet Plateau. System Engineering Theory and Practice, 1997, (5): 72-77.
[毕思文. 全球变化与地球系统科学统一研究的最佳天然实验室——青藏高原. 系统工程理论与实践, 1997, (5): 72-77.]

[11] Yao Tandong, Liu Xiaodong, Wang Ninglian. Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2000, 45(1): 98-106.
[姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题. 科学通报, 2000, 45(1): 98-106.]

[12] Zheng Du, Lin Zhenyao, Zhang Xueqin. Progress in studies of Tibetan Plateau and global environmental change. Earth Science Frontiers, 2002, 9(1): 95-102.
[郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展. 地学前缘, 2002(1): 95-102.]

[13] Zhao Ping, Chen Longxun. Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Science in China (Ser. D), 2001, 31(4): 327-332.
[赵平, 陈隆勋. 35年来青藏高原大气热源气候特征及其与中国降水的关系. 中国科学 (D辑), 2001, 31(4): 327-332.]

[14] Kang Shichang, Li Jijun, Yao Tandong et al. A study of the climate variation in the Tibetan Plateau during the last 50 Years. Journal of Glaciology and Geocryology, 1998, 20(4): 381-387.

[15] Zhao Xinyi, Zhang Huiyuan, Wan Jun. The impact of climatic change on the climate zones in the Qinghai-Tibetan Plateau. Scientia Geographica Sinica, 2002, 22(2): 190-195
[赵昕奕, 张惠远, 万军. 青藏高原气候变化对气候带的影响. 地理科学, 2002, 22(2): 190-195.]

[16] Cai Ying, Li Dongliang, Tang Maocang et al. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meteorology, 2003, 22(5): 464-470.
[蔡英, 李栋梁, 汤懋苍 等. 青藏高原近50年来气温的年代际变化. 高原气象, 2003, 22(5): 464-470.]

[17] Wei Zhigang, Huang Ronghui, Dong Wenjie. Interannual and interdecadal variations of air temperature and precipitation over the Tibetan Plateau. Chinese Journal of Atmospheric Sciences, 2003, 27(2): 157-170.
[韦志刚, 黄荣辉, 董文杰. 青藏高原青藏高原气温和降水的年际和年代际变化. 大气科学, 2003, 27(2): 157-170.]

[18] Xu Ying, Ding Yihui, Li Dongliang. Climatic change over Qinghai and Xizang in 21st Century. Plateau Meteorology, 2003, 22(5): 451-457.
[徐影, 丁一汇, 李栋梁. 青藏地区未来百年气候变化. 高原气象, 2003, 22(5): 451-457.]

[19] Wang Yan, Li Xiong, Miao Qilong. Analyses on variety characteristics of temperature in Qinghai-Tibet Plateau in recent 50 years. Arid Land Geography, 2004, 27(1): 41-46.
[王堰, 李雄, 缪启龙. 青藏高原近50年来气温变化特征的研究. 干旱区地理, 2004, 27(1): 41-46.]

[20] Liu Xiaodong, Zhang Minfeng, Hui Xiaoying et al. Contemporary climatic change of the Qinghai-Xizang Plateau and its response to greenhouse effect. Scientia Geographica Sinica, 1998, 18(2): 113-121.
[刘晓东, 张敏锋, 惠晓英 等. 青藏高原当代气候变化特征及其对温室效应的响应. 地理科学, 1998, 18(2): 113-121.]

[21] Yao Li, Wu Qingmei. Climate change character in the Tibetan Plateau. Meteorological Science and Technology, 2002, 30(3): 162-164.
[姚莉, 吴庆梅. 青藏高原气候变化特征. 气象科技, 2002, 30(3): 162-164.]

[22] Li Lin, Zhu Xide, Qin Ningsheng. Study on temperature variations and its anomaly pattern over Qinghai-Xizang Plateau. Plateau Meteorology, 2003, 22(5): 524-530.
[李林, 朱西德, 秦宁生. 青藏高原气温变化及其异常类型的研究. 高原气象, 2003, 22(5): 524-530.]

[23] Lin Zhenyao, Zhao Xinyi. Spatial characters of temperature and precipitation in the Tibetan Plateau. Science in China (Ser. D), 1996, 26(4): 354-358.
[林振耀, 赵昕奕. 青藏高原气温降水变化的空间特征. 中国科学 (D辑), 1996, 26(4): 354-358.]

[24] Du Jun, Ma Yucai. Climatic trend of rainfall over Tibetan Plateau from 1971-2000. Acta Geographica Sinica, 2004, 59(3): 375-382.
[杜军, 马玉才. 西藏高原降水变化趋势的气候分析. 地理学报, 2004, 59(3): 375-382.]

[25] Feng Song, Tang Maocang, Wang Dongmei. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China. Chinese Science Bulletin, 1998, 43(6): 633-636.
[冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据. 科学通报, 1998, 43(6): 633-636.]

[26] Zheng Du. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau. Science in China (Ser. D), 1996, 39(4): 410-417.

[27] Jesen M E, Bruman R D, Allen R G. Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice No.70. New York: American Society of Civil Engineers, 1990. 87-108.

[28] Allen R G, Pereira L S, Raes D et al. Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations, 1998. http://www.fao.org/docrep/X0490E/x0490e00.htm

[29] Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings, Royal Society, Series A, 1948, 193: 454-465.

[30] Allen R G, Smith M. An update for the definition of reference evapotranspiration, ICID Bulletin, 1994, 43(2): 1-34.

[31] Min Qian. Two questions in application of Penman formula. Meteorological Monthly, 1992, 18(11): 17-21.
[闵骞. 彭曼公式应用中的两个问题的探讨. 气象, 1992, 18(11): 17-21.]

[32] Niu Zhenguo. A distributed model of reference evapotranspiration based on the DEM. Advances in Water Science, 2002, 13(3): 303-307.
[牛振国. 参考作物蒸散量的分布式模型. 水科学进展, 2002, 13(3): 303-307.]

[33] Monteith J L. Evaporation and temperature. Quart. J. Roy. Meteorol. Soc., 1981, 107: 1-27.

[34] Walter I A, Allen R G, Elliott R et al. ASCE's standardized reference evapotranspiration equation. In: Evans R L (ed.). Proceedings of the 4th Decennial Symposium, National Irrigation Symposium. Michigan: American Society of Civil Engineers, 2000. 1-6.

[35] Zuo Dakang, Wang Yixian, Chen Jiansui. Spatial distribution characteristics of solar radiation in China. In: Zheng Du (ed.). Zuo Dakang's Geographical Research Papers. Beijing: Science Press, 1993. 168-185.
[左大康, 王懿贤, 陈建绥. 中国地区太阳总辐射的空间分布特征. 见: 郑度 主编, 左大康地理研究论文选. 北京: 科学出版社, 1993. 168-185.]

Outlines

/