Soil Organic Carbon Storage and Vertical Distribution of Alpine Meadow on the Tibetan Plateau

Expand
  • 1. School of Geography and Planning, Zhongshan University, Guangzhou 510275, China;
    2. Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China;
    3. Northwest Institute of Plateau Biology, CAS, Xining 810001, China

Received date: 2005-01-12

  Revised date: 2006-05-18

  Online published: 2006-07-25

Supported by

National Natural Science Foundation of China, No.40231015; No.40473002; No.40471120; The '985 Project' of GIS and Remote Sensing for Geosciences from the Ministry of Education of China, No.105203200400006

Abstract

The alpine meadow ecosystem is one of the important grassland resources for grazing on the Tibetan Plateau. High-resolution sampling, measurement of roots contents and organic carbon contents of selected soil in Haibei Station were made in an attempt to detect the soil organic carbon storage and vertical distribution of the alpine meadow in the northeast Tibetan Plateau. The results show that considerable magnitude roots biomass (23544.60 kg ha-1-27947 kg ha-1) and organic carbon (21.52 GtC) have been stored in soils of the alpine meadow. Some 30% of total soil organic carbon of natural soil profiles has been stored in the upper horizons (upper 10 cm). Comparison suggests that soil organic carbon storage (23.17×104 kg C ha-1) (0-60 cm) is 2-6 folds of that of forest soil, shrub soil and pasture soil in the Tropics. Soil organic carbon pool of the alpine meadow is ignorable in the carbon budget both of the globe and China. With the global warming, it is important to protect flimsy alpine meadow ecosystem on the Tibetan Plateau, not to disturb the soil cover of alpine meadow, and to introduce feasibly deep-rooted plants for storing much more soil organic carbon, for decreasing CO2 emitting from the soils, for slowing down CO2 concentration rising rate of the atmosphere, and for sustainable developing ecotype services of the alpine meadow.

Cite this article

TAO Zhen, SHEN Chengde, GAO Quanzhou, SUN Yanmin, YI Weixi, LI Yingnian . Soil Organic Carbon Storage and Vertical Distribution of Alpine Meadow on the Tibetan Plateau[J]. Acta Geographica Sinica, 2006 , 61(7) : 720 -728 . DOI: 10.11821/xb200607006

References


[1] Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990.348, 232-234.

[2] Schlesinger W H. An overview of the C cycle. In: Lal R, Kimble J, Levin E et al. (eds.), Soils and Global Change. CRC Press, Inc. 1995. 9-26.

[3] Kimble L R J, Stewart B A. World soils as a source or sink for radiatively-active gases. In: Lal R, Kimble J, Levin E et al. (eds.), Soils and Global Change. CRC Press, Inc., 1995. 1-7.

[4] Post W M, Emanuel W R, Zinke P J et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156-159.

[5] Trumbore S E. Potential responses of soil organic carbon to global environmental change. In: Proceedings of the National Academy Science, 1997, 94: 8284-8291.

[6] Trumbore S, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272: 393-396.

[7] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991, 351: 304-306.

[8] Fang Jingyun, Liu Guohua, Xu Songling. Carbon pool of terrestrial ecosystem in China. In: Wang Gengchen, Wen Yupu (eds.), Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes. Beijing: China Environmental Science Press, 1996. 109-128.
[方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库. 见: 王庚辰, 温玉璞 (eds.), 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996. 109-128.]

[9] Wang Genxu, Cheng Guodong, Shen Yongping. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. Journal of Glaciolgy and Geocryology, 2002, 24(6): 693-700.
[王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, 24(6): 693-700.]

[10] Liu Yunfen, Ouyang Hua, Cao Guangmin et al. Soil carbon emission from ecosystems of eastern Qinghai-Tibet Plateau. Journal of Natural Resources, 2001, 16(2): 152-160.
[刘允芬, 欧阳华, 曹广民 等. 青藏高原东部生态系统土壤碳排放. 自然资源学报, 2001, 16(2): 152-160.]

[11] Pei Zhiyong, Ouyang Hua, Zhou Caiping. A study on carbon fluxes from alpine grassland ecosystem on Tibetan Plateau. Acta Ecologica Sinica, 2003, 23(2): 231-236.
[裴志永, 欧阳华, 周才平. 青藏高原高寒草原碳排放及其迁移过程研究. 生态学报, 2003, 23(2): 231-236.]

[12] Liu Yunfen, Ouyang Hua, Zhang Xianzhou et al. Carbon balance in agro-ecosystem in Qinghai-Tibet Plateau. Acta Pedologica Sinica, 2002, 39(5): 636-642.
[刘允芬, 欧阳华, 张宪洲 等. 青藏高原农田生态系统碳平衡. 土壤学报, 2002, 39(5): 636-642.]

[13] Zhang X Z, Shi P L, Liu Y F, et al. Experimental study on soil CO2 emission in the alpine grassland ecosystem on Tibetan Plateau. Science in China (Series D), 2005, 48(suppl. 1): 218-224.

[14] Zhang Jinxia, Cao Guangmin, Zhou Dangwei et al. Diel and seasonal changes of carbon dioxide emission from mollic-cryic cambisols on degraded grassland. Acta Pedologica Sinica, 2001, 38(1): 32-39.
[张金霞, 曹广民, 周党卫 等. 退化草地暗沃寒冻雏形土CO2释放的日变化和季节动态. 土壤学报, 2001, 38(1): 32-39.]

[15] Cao Guangmin, Li Yingnian, Zhang Jinxia et al. Values of carbon dioxide emission from different land use patterns of alpine meadow. Environmental Sciences, 2001, 22(6): 14-19.
[曹广民, 李英年, 张金霞 等. 高寒草甸不同土地利用格局土壤CO2的释放量. 环境科学, 2001, 22(6): 14-19.]

[16] Wang Shaoqiang, Zhou Chenghu. Estimating soil carbon reservior of terrestrial ecosystem in China. Geographical Research, 1999, 18(4): 349-356.
[王绍强, 周成虎. 中国陆地土壤有机碳库的估算. 地理研究, 1999, 18(4): 349-356.]

[17] Zhang Yaosheng, Zhou Xingmin, Wang Qiji. A preliminary analysis of production performance of oat (Avena sativa) at alpine meadow pasture. Acta Agrestia Sinica, 1998, 16(2): 115-123.
[张耀生, 周兴民, 王启基. 高寒牧区燕麦生产性能的初步分析. 草地学报, 1998, 16(2): 115-123.]

[18] Li Yingnian, Wang Qinxue, Gu Song et al. Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica, 2004, 59(1): 40-48.
[李英年, 王勤学, 古松 等. 高寒植被类型及其植物生产力的监测. 地理学报, 2004, 59(1): 40-48.]

[19] Wang Y, Amundson Ronald. The impact of land use change on C turnover in soils. Global Biogeochemical Cycles, 1999, 13(1): 47-57.

[20] Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Am. J., 1994, 58: 175-180.

[21] Frank A B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environmental Pollution, 2002, 116: 397-403.

[22] Rastetter E B, McKane R B, Shaver G R. Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to CO2 and temperature. Water, Air, and Soil Pollution, 1992, 64: 327-344.

[23] Gifford R M. The global carbon cycle. Australian Journal of Plant Physiology, 1994, 21: 1-15.

[24] Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biol., 1995, 1: 77-91.

[25] Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 1996, 382: 146-149.

[26] Fan S, Gloor M, Mahlman J et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998, 282: 442-446.

[27] Weaver J E, Hougen V H, Weldon M D. Relation of root distribution to organic matter in prairie soil. The Botanical Gazette, 1935, 96(3): 389-420.

[28] Gill R A. Biotic controls over the depth destribution of soil organic matter. Doctoral Dissertation in Ecology. Colorado State University, Fort Collins, CO., 1998.

[29] Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116: 457-463.

[30] Wang Y. The impact of land use change on C turnover in soils. Global Biogeochemical Cycles, 1999, 13(1): 47-57.

[31] Becker-Heidmann P, Andresen O, Kalmar D et al. Carbon dynamics in vertisols as revealed by high-resolution sampling. Radiocarbon, 2002, 44(1): 63-73.

[32] Chen Q Q, Sun Y M, Shen C D et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena, 2002, 49: 217-229.

[33] Adams J M, Faure H, Faure-Denard L et al. Increases interrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 1990, 348: 711-714.

[34] Anderson J M. Responses of soils to climate change. Adv. Ecol. Res., 1992, 22: 163-210.

[35] Batjes N H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 1996, 47: 151-163.

[36] Eswaran H, van den Berg E, Reich P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J., 1993, 57: 192-194.

[37] Wang Shaoqiang, Zhou Chenghu, Li Kerang et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 2000, 55(5): 533-544.
[王绍强, 周成虎, 李克让 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544.]

[38] Li Kerang, Wang Shaoqiang, Cao Mingkui. Vegetation and soil carbon storage in China. Science in China (Series D), 2004, 47(1): 49-57.

[39] Ni J. Carbon storage in terrestrial ecosystems of China. Climatic Change, 2001, 49(3): 339-358.

[40] Post W M, Peng T H, Emanuel W R et al. The global carbon cycle. American Scientist, 1990, 78: 310-326.

[41] Foley J A. An equilibrium model of the terrestrial carbon budget. Tellus, 1995, 47(B): 310-319.

[42] King A W, Emanuel W R, Wullschleger S D et al. A search of the missing carbon sink: a model of terrestrial biospheric response to landuse change and atmospheric CO2. Tellus, 1995, 47(B): 501-519.

Outlines

/