Mining Transition Rules for Geo-simulation Using Rough Sets

  • School of Geography and Planning, Zhongshan University, Guangzhou 510275, China

Received date: 2005-10-21

  Revised date: 2006-04-27

  Online published: 2006-08-25

Supported by

National Outstanding Youth Foundation of NSF of China, No.40525002; National Natural Science Foundation of China, No.40471105; "985 Project" of GIS and Remote Sensing for Geosciences from the Ministry of Education of China]


This paper presents a new method to simulate complex land use systems by integrating rough sets (RS), cellular automata, and GIS. Recently, cellular automata (CA) have been increasingly used to simulate urban growth and land use dynamics. Traditional CA models simulate urban development with static transition rules in large areas. Most of them are expressed by mathematical formulas and the transition rules are fixed. These models have limitations to simulate complex land use change. The transition rules should be subject to uncertainties and they should vary spatially. In this study, a CA model based on rough sets is developed using Visual Basic and ArcObjects of GIS. The GIS provides both data and spatial analysis functions for constructing RS-CA model. Training data are conveniently retrieved from remote sensing and GIS database for calibrating and testing the model. The rough sets method is used to obtain the uncertainty and dynamic transition rules. The RS-CA model can be applied to the simulation of urban development. Complex global patterns can be generated from the local interactions with the RS-CA model. This paper demonstrates that the proposed model can overcome some of the shortcomings of the existing CA models in simulating complex urban systems by using the rough set method. The model has been successfully applied to the simulation of urban development in Shenzhen city of the Pearl River Delta.

Cite this article

YANG Qingsheng, LI Xia . Mining Transition Rules for Geo-simulation Using Rough Sets[J]. Acta Geographica Sinica, 2006 , 61(8) : 882 -894 . DOI: 10.11821/xb200608011


[1] Batty M, Xie Y. From cells to cities. Environment and Planning B: Planning and Design, 1994, 21: 531-548.

[2] Ward D P, Murray A T, Phinn S R. A stochastically constrained cellular model of urban growth. Computers, Environment and Urban Systems, 2000, 24: 539-558.

[3] Zhou Chenghu, Sun Zhanli, Xie Yichun. Geo-cellular Automata. Beijing: Science Press, 1999. 1-163.
[周成虎, 孙战利, 谢一春. 地理元胞自动机研究. 北京: 科学出版社, 1999. 1-163.]

[4] Batty M, Xie Y. Possible urban automata. Environment and Planning B, 1997, 24: 175-192.

[5] White R, Engelen G. Cellular automata as the basis of integrated dynamic regional analysis. Environment and Planning B: Planning and Design, 1997, 24: 235-246.

[6] Takeshi Arai, Tetsuya Akiyama. Empirical analysis for estimating land use transition potential functions: case in the Tokyo metropolitan region. Computers, Environment and Urban Systems, 2004, 28: 65-84.

[7] Ton C M de Nijs, R de Niet, L Crommentuijn. Constructing land-use maps of the Netherlands in 2030. Journal of Environmental Management, 2004, 72: 35-42.

[8] Silva E A, Clarke K C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 2002, 26: 525-552.

[9] He Chunyang, Chen Jin, Shi Peijun et al. City expansion model of metropolitan area in China: a case study of Beijing. Acta Geographica Sinica, 2003, 58(2): 294-304.
[何春阳, 陈晋, 史培军 等. 大都市城市扩展模型: 以北京城市扩展模拟为例. 地理学报, 2003, 58(2): 294-304.]

[10] He Chunyang, Shi Peijun, Chen Jin et al. Land use scene model based on system dynamics model and CA model. Science in China (Series D), 2005, 35(5): 464-473.
[何春阳, 史培军, 陈晋 等. 基于系统动力学模型和元胞自动机模型的土地利用情景模型研究. 中国科学(D辑), 2005, 35(5): 464-473.]

[11] Ma Xiujun, Wu Lun, Xie Kunqing. The method for modeling on spatial dynamic process. Acta Scientiarum Naturalium University Pekinensis, 2004, 40(2): 279-286.
[马修军, 邬伦, 谢昆青. 空间动态模型建模方法. 北京大学学报(自然科学版), 2004, 40(2): 279-286.]

[12] Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton of historical urbanization in the San Francisco Bay area. Environment and Planning B, 1997, 24: 247-261.

[13] White R, Engelen G. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 1993, 25: 1175-1199.

[14] Li Xia, Yeh A G O. Constrained cellular automata for modeling sustainable urban forms. Acta Geographica Sinica, 1999, 54(4): 289-298.
[黎夏, 叶嘉安. 约束性单元自动演化CA模型及可持续发展城市形态的模拟. 地理学报, 1999, 54(4): 289-298.]

[15] Wu F. Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int. J. Geographical Information Science, 2002, 16(8): 795-818.

[16] Li X, Yeh A G O. Principal component analysis of stacked multi-temporal images for monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 1998, 19(8): 1501-1518.

[17] Wu F, Webste C J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B, 1998, 5: 103-126.

[18] Wu F. SimLand: a prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. Int. J. Geographical Information Science, 1998, 12(1): 63-82.

[19] Liu Y, Phinn S R. Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment and Urban Systems, 2003, 27: 637-658.

[20] Li Xia, Yeh A G O. Spatial decision and urban simulation based on principal component analysis and CA model. Science in China (Series D), 2001, 31(8): 683-690.
[黎夏, 叶嘉安. 主成分分析与CA在空间决策与城市模拟中的应用. 中国科学(D辑), 地球科学, 2001, 31(8): 683-690.]

[21] Li Xia, Yeh A G O. Neural-network-based cellular automata for realistic and idealized urban simulation. Acta Geographica Sinica, 2002, 57(2): 159-166.
[黎夏, 叶嘉安. 基于神经网络的单元自动机CA模拟及真实和优化城市的模拟. 地理学报, 2002, 57(2): 159-166.]

[22] Li Xia, Yeh A G O. Mining cellular automata's transition rules. Science in China (Series D), 2004, 34(9): 865-872.
[黎夏, 叶嘉安. 知识发现及地理元胞自动机. 中国科学(D辑), 2004, 34(9): 865-872.]

[23] Li X. Advanced GIS Modelling Technical and Applications. Beijing: China Education & Culture Publishing Company, 2005. 265-286.

[24] Li Xiongfei, Li Jun. Data Mining and Knowledge Discovery. Beijing: Higher Education Press, 2003. 43-62.
[李雄飞, 李军. 数据挖掘与知识发现. 北京: 高等教育出版社, 2003. 43-62.]

[25] Pawalk Z. Why rough sets fuzzy systems. Proceedings of the Fifth IEEE International Conference on Data Mining. Warsaw, Poland: ACTA Press, 1996. 9-17.

[26] Gao K, Chen K X, Liu M Q et al. Rough set based data mining tasks scheduling on knowledge grid. Lecture Notes in Computer Science, 2005, 3528: 150-155.

[27] Hassan Y, Tazaki E. Emergent rough set data analysis. Kybernetes, 2005, 34(5-6): 869-887.

[28] Jiang J S, Wu C X, Chen D G. The product struct of fuzzy rough sets on a group and rough T-fuzzy group. Information Sciences, 2005, 175(1-2): 97-107.

[29] Gao K, Ji Y Q, Liu M Q et al. Rough set based computation times estimation on Knowledge Grid. Lecture Notes in Computer Science, 2005, 3470: 557-566.

[30] Pawlak Z. Rough sets. International Journal of Information and Computer Science, 1982, 11(5): 341-356.

[31] Wu Shunxiang, Liu Sifeng, Gu Jiande. An improved algorithm of attribute reduction in rough set. Journal of Xiamen University (Natural Science), 2004, 43(5): 604-608.
[吴顺祥, 刘思峰, 辜建德. 基于粗集理论的一种规则提取方法. 厦门大学学报(自然科学版), 2004, 43(5): 604-608.]