Reliability of NCEP/NCAR Reanalysis Data on Mount Qomolangma and Western Nyainqentanglha Range

  • Joint Key Laboratory of Cryosphere and Environment, Cold and Arid Regions Environment and Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2006-11-12

  Revised date: 2006-12-20

  Online published: 2007-03-25

Supported by

National Natural Science Foundation of China, No.40501015; Knowledge Innovation Project of CAS, No.KZCX3-SW-344; National Natural Science Foundation of China, No.90411003


Mount Qomolangma , the highest peak on Earth, is often referred to as the third pole of the globe. The Nyainqentanglha is one of the closest remote parts of mountain range north to the Himalayas. As such the two places are relatively inaccessible on the southern Tibetan Plateau and little is known about their meteorology. In 2003, an auto weather station was deployed at the north col of western Nyainqentanglha (WNQ) range (30o24'44.3"N, 90o34'13.1"E, 5850 m a.s.l.). In 2005, the other station was operated at the north col of Mount Qomolangma (28o01'0.95"N, 86o57'48.4"E, 6523 m a.s.l.). We believe that these represent the high elevation at which continuous weather data have never been collected and thus are valuable datasets with which to investigate the meteorology of the high altitude southern Tibetan Plateau. In this paper, we compare the observations with the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, in order to understand the reliability of NCEP/NCAR reanalysis data on Mount Qomolangma and Nyainqentanglha Range. We find that the reanalysis captures much of the synoptic-scale variability in temperature and pressure, although the reanalysis values are systematically lower than the observations. Furthermore, most of the variability magnitude is, to some extent, underestimated. In addition, the weather event extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data on Mount Qomolangma , while on the WNQ range it frequently occurs on the same day and there is no obvious lead or lag. Influenced by the same atmosphere circulation, Mount Qomolangma and the WNQ range have close correlations both in the observational data and reanalyzed data.

Cite this article

XIE Aihong, QIN Dahe, REN Jiawen, QIN Xiang, KANG Shichang, JIANG Youyan . Reliability of NCEP/NCAR Reanalysis Data on Mount Qomolangma and Western Nyainqentanglha Range[J]. Acta Geographica Sinica, 2007 , 62(3) : 268 -278 . DOI: 10.11821/xb200703004


[1] Venables S. Everest Summit of Achievement. London: R. Geogr. Soc., 2003. 252.

[2] Egger J, Bajrachaya S, Egger U et al. Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Monthly Weather Review, 2000, 128: 1106-1122.

[3] Yang Xuchao, Zhang Yili, Zhang Wei et al. Climate change in Mt. Qomolangma region in China during the last 34 years. Acta Geographica Sinica, 2006, 61(7): 687-696.
[杨续超, 张镱锂, 张玮等. 珠穆朗玛峰地区近34 年来气候变 化. 地理学报, 2006, 61(7): 687-696.]

[4] Kang Shichang, Qin Dahe, Ren Jiawen et al. Relationships between an ice core records from southern Tibetan Plateau and atmospheric circulation over Asia. Quaternary Sciences, 2006, 26(2): 153-164.
[康世昌, 秦大河, 任贾文等. 青藏 高原南部冰芯记录与大气环流的关系. 第四纪研究, 2006, 26(2): 153-164.]

[5] West J B. Barometric pressures on Mt. Everest: New data and physiological significance. Journal of Applied Physiology, 1999, 86: 1062-1066.

[6] Huey R B, Eguskitza X. Limits to human performance: Elevated risks on high mountains. Journal of Experimental Biology, 2001, 204: 3115-3119.

[7] Li Chaoliu, Kang Shichang. Review of studies in climate change over the Tibetan Plateau. Acta Geographica Sinica, 2006, 61(3): 327-335.
[李潮流, 康世昌. 青藏高原不同时段气候变化的研究综述. 地理学报, 2006, 61(3): 327-335.]

[8] Qin Dahe, Hou Shugui, Zhang Dongqi et al. Preliminary results from the chemical records of an 80.4 m ice core recovered from East Rongbuk Glacier, Everest (Mount Everest). Annals of Glaciology, 2002, 35: 278-284.

[9] Qin Dahe, Mayewski P A, Wake C P et al. Evidence for recent climate change from ice cores in the central Himalayas. Annals of Glaciology, 2000, 31: 153-158.

[10] Ren Jiawen, Qin Dahe, Jing Zhefan. Climatic warming causes the glacier retreat in Mount Qomolangma. Journal of Glaciology and Geocryology, 1998, 20(2): 184-185.
[任贾文, 秦大河, 井哲帆. 气候变暖使珠穆朗玛峰地区冰川处于 退缩状态. 冰川冻土, 1998, 20(2): 184-185.]

[11] Ren Jiawen, Qin Dahe, Kang Shichang et al. Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin, 2003, 49: 65-69.
[任贾文, 秦大河, 康世昌等. 喜马拉雅山中段冰川变化及气 候暖干化特征. 科学通报, 2003, 49: 65-69.]

[12] Kang S, Mayewski P A, Qin D et al. Twentieth century increase of atmospheric ammonia recorded in Mt. Everest ice core. Journal of Geophysical Research, 2002, 107(D21), 10.1029/2001JD001413, 4595.

[13] Xiao C D, Kang S C, Qin D H et al. Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) Plateau as shown by snow chemistry. Journal of Asian Earth Science, 2002, 20: 231-239.

[14] Hou Shugui, Zhang Dongqi. Comparison of two ice core records since 1954 from Mt. Qomolangma (Everest) region. Journal of Glaciology and Geocryology, 2003, 25(3): 256-260.
[侯书贵, 张东启. 1954 年以来珠穆朗玛峰地区两支冰 芯记录的对比分析. 冰川冻土, 2003, 25(3): 256-260.]

[15] Thompson L G, Ellen Mosley-Thompson, Mary E Davis et al. Ice core evidence for asynchronous glaciation on the Tibetan Plateau. Quaternary International, 2006, 154/155: 3-10.

[16] Thompson L G, Yao T, Davis M E et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276: 1821-25.

[17] Thompson L G, Yao T, Mosley-Thompson et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919.

[18] Krakauer J. Into Thin Air: A Personal Account of the Mount Everest Disaster. New York: Anchor Books, 1999. 332.

[19] Bertolani L, Bollasina M, Tartari G. Recent biennial variability of meteorological features in the Eastern Highland Himalayas. Geophysical Research Letters, 2000, 27: 2185-2188.

[20] Bollasina M, Benedict S. The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system. Bulletin of American Meteorological Society, 2004, 85(7): 1001-1004.

[21] Bollasina M, Bertolani L, Tartari G. Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas. 1994-1999. Bulletin of Glaciological Research, 2002, 19: 1-11.

[22] Moore G W K, Semple J L. High Himalayan meteorology: Weather at the south col of Mount Everest. Geophysical Research Letters, 2004, 31, L18109, doi: 10.1029/2004GL020621.

[23] Kalnay E E, Kanamitsu M, Kistl R. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 1996, 77: 437-471.

[24] Kistler R, Kalny E, Collins W. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of American Meteorological Society, 2001, 82(2): 247-267.

[25] Simmonds I, Keay K. Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NECP-NCAR reanalysis. Journal of Climate, 2000, 13: 873-885.

[26] Trenberth K E. Atmospheric circulation climate changes. Climate Change, 1995, 31: 427-453.

[27] A Dell'Aquila, Lucarini V, Ruti P M et al. Calmanti. Discrepancies in southern hemisphere mid-latitude atmospheric variability of the NCEP-NCAR and ECMWF reanalyses. Journal of Geophysical Research, 2007.

[28] Zhang Qiong, Qian Yongfu. Monthly mean surface albedo estimated from NCEP/NCAR reanalysis radiation data. Acta Geographica Sinica, 1999, 54(4): 309-317.
[张琼, 钱永甫. 用NCEP/NCAR 再分析辐射资料估算月平均地表反照率. 地理学报, 1999, 54(4): 309-317.]

[29] Xu Ying, Ding Yihui, Zhao Zongci. Confidence analysis of NCEP/NCAR 50-year global reanalyzed data in climate change research in China. Quarterly Journal of Applied Meteorology, 2001, 12(3): 337-347.
[徐影, 丁一汇, 赵宗慈. 美国NCEP/ NCAR 近50 年全球再分析资料在我国气候变化研究中可信度的初步分析. 应用气象学报, 2001, 12 (3): 337-347.]

[30] Su Zhixia, Lu Shihua, Luo Siwei. The examinations and analysis of NCEP/NCAR 40 years global reanalysis data in China. Plateau Meteorology, 1999, 18(2): 209-218.
[苏志侠, 吕世华, 罗四维. 美国NCEP-NCAR 全球再分析资料及 其初步分析. 高原气象, 1999, 18(2): 209-218.]

[31] Wei Li, Li Dongliang. Reliability of NCEP/NCAR reanalysis data in climatic change along Tibet railway. Plateau Meteorology, 2003, 22(5): 488-494.
[魏丽, 李栋梁. NCEP/NCAR 再分析资料在青藏铁路沿线气候变化研究中的适 用性. 高原气象, 2003, 22(5): 488-494.]

[32] Xie Aihong, Ren Jiawen, Qin Xiang et al. Features of meteorological elements at Mt. Everest 6523 m from May 1 to July 22 in 2005. Journal of Glaciology and Geocryology, 2006, 28(6): 908-917.
[ 谢爱红, 任贾文, 秦翔等. 2005 年 5~7 月珠穆朗玛峰北坡海拔6523m 气象要素特征. 冰川冻土, 2006, 28(6): 908-917.]

[33] Linacre E. Climate Data and Resources: A Reference and Guide. New York: Routledge, 1992. 366.

[34] Ye Duzheng, Gao Youxi et al. Meteorology of the Tibetan Plateau. Beijing: Science Press, 1979. 10-201.
[叶笃正, 高 由禧等. 青藏高原气象学. 北京: 科学出版社, 1979. 10-201.]

[35] Zhang Wengang, Li Shuxun, Wu Tonghua et al. Changes of the differences between ground and air temperature over the Qinghai-Xizang Plateau. Acta Geographica Sinica, 2006, 61(9): 900-910.
[张文纲, 李述训, 吴通华等. 青藏高原 地气温差变化分析. 地理学报, 2006, 61(9): 900-910.]