Prospects on future developments of quantitative remote sensing

  • 1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications of CAS, Beijing 100875, China;
    2. National Marine Data and Information Service, Tianjin 300171, China

Received date: 2013-04-16

  Revised date: 2013-05-30

  Online published: 2013-09-05

Supported by

Foundation National "973" Program, No.2013CB733401


With regard to the national needs and basic research, several critical issues should be addressed in quantitative remote sensing: inefficient use of mass remote sensing data, inadequate universality and systematicness of quantitative remote sensing research, and limits in remote sensing applications. Therefore, Remote Sensing Science (RSS) research subjects need to be integrated with other disciplines in order to advance our understanding of RSS. In the authors' opinion, due to the heterogeneity of the geo-surface, generalization and modeling on the basis of experimental data, as opposed to individual interpretation of a specific location, could be the key for the future research. Combining "a top-down deduction method" with "a bottom-up induction method" in integrative physical geography in China, we want to build a methodological framework to resolve the central issues of RSS, for instance, the "scale effect", and to create several open platforms (such as data, inversion and computer simulation), and to bring together experts from different disciplines.

Cite this article

LI Xiaowen, WANG Yiting . Prospects on future developments of quantitative remote sensing[J]. Acta Geographica Sinica, 2013 , 68(9) : 1163 -1169 . DOI: 10.11821/dlxb201309001


[1] Li Xiaowen, Zhao Hongrui, Zhang Hao et al. Global change study and quantitative remote sensing for land surface parameters. Earth Science Frontiers, 2002, 9(2): 365-370. [李小文, 赵红蕊, 张颢等. 全球变化与地表参数的定量遥 感. 地学前缘, 2002, 9(2): 365-370.]
[2] Xu L, Myneni R B, Chapin Iii F S et al. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013. Advance online publication, doi:
[3] Li X W, Wang J D, Strahler A H. Scale effects and scaling-up by geometric-optical models. Science in China: Series E, 2000, 43(Suppl.): 17-22.
[4] Li Xin, Li Xiaowen, Li Zengyuan et al. Progress on the watershed allied telemetry experimental research (WATER). Remote Sensing Technology and Application, 2012, 27(5): 637-649. [李新, 李小文, 李增元等. 黑河综合遥感联合试验 研究进展: 概述. 遥感技术与应用, 2012, 27(5): 637-649.]
[5] Estes J E, Jensen J R, Simonett D S. Impacts of remote sensing on U.S. geography. Remote Sensing of Environment, 1980, 10: 43-80.
[6] Cai Yunlong. New perspectives on physical geography. Geographical Research, 2010, 29(1): 1-11. [蔡运龙. 当代自然地 理学态势. 地理研究, 2010, 29(1): 1-11.]
[7] Li Xiaowen. Retrospect, prospect and innovation in quantitative remote sensing. Journal of Henan University: Natural Science, 2005, 35(4): 49-56. [李小文. 定量遥感的发展与创新. 河南大学学报: 自然科学版, 2005, 35(4): 49-56.]
[8] Albert B J, Strahler A H, Li X W et al. Radiometric measurements of gap probability in conifer tree canopies. Remote Sensing of Environment, 1990, 34: 179-192.
[9] Li X W, Wan Z M. Comments on reciprocity in the BRDF modelling. Progress in Natural Science, 1999, 3: 99-103.
[10] Li X W, Wang J D, Strahler A H. Apparent reciprocity failure in directional reflectance of structure surfaces. Progress in Natural Science, 1999, 9(10): 747-752.
[11] Li X W, Wang J D. The definition of effective emissivity of land surface at the scale of remote sensing pixels. Chinese Science Bulletin, 1999, 44(23): 2154-2158.
[12] Li X W, Wang J D, Strahler A H. Scale effects of Planck's Law over a non-isothermal blackbody surface. Science in China: Series E, 1999, (6): 652-656.
[13] Liu Qiang, Li Xiaowen, Wang Jindi. A test of Reciprocity in remote sensing with POLDER data. Journal of Remote Sensing, 2000, 4(3): 183-188. [刘强, 李小文, 王锦地. 用多角度POLDER数据验证互易原理在遥感像元尺度的适用 性. 遥感学报, 2000, 4(3): 183-188.]
[14] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987, 21: 311-332.
[15] Hay G J, Niemann K O, Goodenough D G. Spatial thresholds, image-objects, and upscaling: A multiscale evaluation. Remote Sensing of Environment, 1997, 62: 1-19.
[16] Raffy M. Change of scale in models of remote sensing: A general method for spatialisation of models. Remote Sensing of Environment, 1992, 40: 101-112.
[17] Raffy M, Gregoire C. Semi-empirical models and scaling: A least square method for remote sensing experiments. International Journal of Remote Sensing, 1998, 19: 2527-2541.
[18] Hu Z, Islam S. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Transaction on Geoscience and Remote Sensing, 1997, 13: 747-755.
[19] Zhang X, Zhang B, Zheng L F et al. Study on the retrieval of emissivity spectra from airborne thermal infrared data. Journal of Infrared and Millimeter Waves, 2000, 19(5): 361-365.
[20] Su L H, Li X W, Friedl M. et al. A kernel-driven model of effective directional emissivity for non-isothermal surfaces. Progress in Natural Science, 2002, 12(8): 603-607.
[21] Su L H, Li X W, Liang S L. Simulation of scaling effects of thermal emission from non-isothermal pixels with the typical three-dimensional strucuture. International Journal of Remote Sensing, 2003, 24(19): 3743-3753.
[22] Chen Jun, Wang Weicai, Wang Baojun et al. Distribution variance of suspended sediment concentration and scaling effect correction: Eight neighborhod algorithm. Journal of Infrared and Milimeter Waves, 2010, 29(6): 440-445. [陈军, 王伟财, 王保军等. 悬浮泥沙浓度分布方差与尺度修正: 八邻域算法. 红外与毫米波学报, 2010, 29(6): 440-445.]
[23] Wan Huawei, Wang Jindi, Qu Yonghua et al. Preliminary research on scale effect and scaling-up of the vegetation spectrum. Journal of Remote Sensing, 2008, 12(4): 538-545. [万华伟, 王锦地, 屈永华等. 植被波谱空间尺度效应及 尺度转换方法初步研究. 遥感学报, 2008, 12(4): 538-545.]
[24] Li Xiaomei, Sha Jinming, Lian Jianglong et al. Regional characteristic scale of NDVI based on wavelet analysis. Acta Ecologica Sinica, 2010, 30(11): 2864-2873. [李小梅, 沙晋明, 连江龙等. 基于小波变换的NDVI区域特征尺度. 生态 学报, 2010, 30(11): 2864-2873.]
[25] Zhang H, Jiao Z T, Yang H. Research on scale effects of histogram. Science in China: Series D, 2002, 45(10): 949-960.
[26] Quan Jinling, Zhan Wenfeng, Chen Yunhao et al. Downscaling remotely sensed land surface temperatures: A comparison of typical methods. Journal of Remote Sensing, 2013, 17(2): 361-387. [全金玲, 占文凤, 陈云浩等. 遥感 地表温度降尺度方法比较: 性能对比及适应性评价. 遥感学报, 2013, 17(2): 361-387.]
[27] Chen Jian, Ni Shaoxiang, Li Jingjing et al. Sealing efect and spatial variability in retrieval of vegetation LAl from remotely sensed data. Acta Ecologica Sinica, 2006, 26(5): 1502-1508. [陈健, 倪绍祥, 李静静等. 植被叶面积指数遥 感反演的尺度效应及空间变异性. 生态学报, 2006, 26(5): 1502-1508.]
[28] Zhu X H, Feng X M, Zhao Y S et al. Scale effect and error analysis of crop LAI inversion. Journal of Remote Sensing, 2010, 14(3): 579-592.
[29] Wu Hua, Jiang Xiaoguang, Xi Xiaohuan et al. Comparison and analysis of two general scaling methods for remotely sensed information. Journal of Remote Sensing, 2009, 13(2): 183-189. [吴骅, 姜小光, 习晓环等. 两种普适性尺度转 换方法比较与分析研究. 遥感学报,2009,13(2): 183-189.]
[30] Fan Wenjie, Yan Binyan, Xu Xiru. Crop area and leaf area index simultaneous retrieval based on spatial scaling transformation. Science in China: Earth Science, 2010, 40(12): 1725-1732. [范闻捷, 闫彬彦, 徐希儒. 尺度转换规律与 同步反演作物播种面积和叶面积指数. 中国科学: 地球科学, 2010, 40(12): 1725-1732.]
[31] Wang L W, Wei Y X, Niu Z. Spatial scaling of net primary productivity model based on remote sensing. Journal of Remote Sensing, 2010, 14(6): 1074-1089.
[32] Xu Zhiying, Hu Yunfeng, Liu Yue et al. A review on the accuracy analysis of spatial scaling data. Progress in Geography, 2012, 31(12): 1574-1582. [徐芝英, 胡云峰, 刘越等. 空间尺度转换数据精度评价的准则和方法. 地理科 学进展, 2012, 31(12): 1574-1582.]
[33] Li X, Cheng G D, Liu S M et al. Heihe Watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013. Advance online publication, doi: