Dynamic Analysis on Carbon Accumulation of a Plantation in Qianyanzhou Based on Tree Ring Data
Received date: 2008-09-05
Revised date: 2008-11-10
Online published: 2009-01-25
Supported by
Knowledge Innovation Project of CAS, No.KZCX2-YW-305-3;National Key Project of Scientific and Technical Supposing Programs, No.2006BAC08B00
The authors developed a model to estimate annual tree growth based on tree-ring data (Abbr. TGTRing model) derived from the trunk at 0.5 m, 1.3 m and 2.5 m height. This model was applied to estimate the annual biomass and carbon accumulation of a plantation in Qianyanzhou Red-Soil Hill Comprehensive Development Experimental Station of CAS in Taihe County, Jiangxi Province (Abbr. Qianyanzhou). The results showed that the inflexion points of the biomass and carbon accumulation curves occur at 17 and 18 years of age, respectively, in Masson pine, whilst both inflexion points occurred at 15 years in slash pine and Chinese fir. The biomass and carbon accumulation in Chinese fir proved to be greater in the last 20 years than in the other species, with 171.697 t/hm2 and 92.29 tc/hm2, respectively. Masson pine, with a biomass of 133.84 t/hm2 and a carbon accumulation of 73.92 tc/hm2, was the lowest whilst slash pine was intermediate with a biomass of 147.639 t/hm2 (unturpentined) and 135.743 t/hm2 (turpentined), and a carbon accumulation of 80.18 tc/hm2 (unturpentined) and 73.72 tc/hm2 (turpentined). In 2006, the total biomass and carbon storage of the tree stratum of Masson pine in Qianyanzhou was 3324.43 t and 14156.64 tc, respectively, whilst the values for Chinese fir were 1326.97 t and 713.27 tc. For slash pine was the total biomass was 14156.64 t (unturpentined) and 13015.97 t (turpentined), and the total carbon storage was 7688.21 tc (unturpentined) and 7068.78 tc (turpentined). Following the shaving of slash pine for resin, the total biomass was reduced by 1140.67 t and the total carbon storage fell by 619.43 tc.
Key words: tree-ring; biomass; carbon accumulation; TGTRing model; Qianyanzhou
SHAO Quanqin,YANG Haijun,LIU Jiyuan,HUANG Lin,CHEN Zuoqi . Dynamic Analysis on Carbon Accumulation of a Plantation in Qianyanzhou Based on Tree Ring Data[J]. Acta Geographica Sinica, 2009 , 64(1) : 69 -83 . DOI: 10.11821/xb200901008
[1] Woodwell G M, Whittaker R H, Reiners W A et al. The biota and the world carbon budget. Science, 1978, 199: 141-146.
[2] Liu Guohua, Fu Bojie, Fang Jingyuan. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecologica Sinica, 2000, 20(5): 733-740.
[刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 2000, 20(5): 733-740.]
[3] Fang J Y, Chen A P, Peng C H et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292(5525): 2320-2322.
[4] Li Yide, Zeng Qingbo, Wu Zhongming et al. Estimation of amount of carbon pool in natural tropical forest of China. Forest Research, 1998, 11(2): 156-162.
[李意德, 曾庆波, 吴仲民等. 我国热带天然林植被C 贮存量的估算. 林业科 学研究, 1998, 11(2): 156-162.]
[5] Alexeyev V, Birdsey R, Stakanov V et al. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution. Water, Air and Soil Pollution, 1995, 82: 271-282.
[6] Brown S, Lugo A E. Biomass of tropical forests: A new estimate based on forest volumes. Science, 1984, 223: 1290-1293.
[7] Wang Xiaoke, Feng Zongwei, Ouyang Zhiyun. Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 2001, 12(1): 13-16.
[王效科, 冯宗炜, 欧阳志云. 中国森林生态系统的植物碳储 量和碳密度研究. 应用生态学报, 2001, 12(1): 13-16.]
[8] Harcombe P A. Stand development in a 130-year-old spruce-hemlock forest based on age structure and 50 years of mortality data. Forest Ecology and Management, 1986, 14: 41-58.
[9] Greene S E, Harcombe P A, Harmon M E et al. Patterns of growth, mortality and biomass change in a coastal Picea sitchensis-Tsuga heterophylla forest. Journal of Vegetation Science, 1992, 3: 697-706.
[10] Acker S A, Halpern C B, Harmon M E, et al. Trends in bole biomass accumulation, net primary production and tree mortality in Pseudotsuga menziesii forest of contrasting age. Tree Physiology, 2002, 22: 213-217.
[11] Liu Y F, Yu G R, Wen X F et al. Seasonal dynamics of CO2 fluxes from sub-tropical plantation coniferous ecosystem. Science in China (Series D), 2006, 49(suppl.2): 99-109.
[12] Falge E, Baldocchi D, Tenhunen J et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113: 53274.
[13] Baldocchi D, Falge E, Gu L H et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 2001, 82: 2415-2434.
[14] Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252.
[15] Melillo J M, McGuire A D, Kicklighter D W et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240.
[16] Bonan G B. Land-atmosphere interaction for climate system models: Coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sensing of Environment, 1995, 51: 57-73.
[17] Prentice I C, Cramer W, Harrison S P et al. A global biome based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 1992, 19: 117-134.
[18] Woodward F I, Smith T M, Emanuel W R. A global primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9: 471-490.
[19] Malmstrom C M, Thompson M V, Juday G et al. Interannual variation in global-scale net primary production: Testing model estimates. Global Biogeochemical Cycles, 1997, 11: 367-392.
[20] Foody G M, Curran P J. Estimation of tropical forest extent and regenerative stage using remotely sensed data. Journal of Biogeography, 1994, 21: 223-244.
[21] Gong Peng. Progression of RS-ecometrics. Journal of Natural Resources, 1999, 14(4), 51-54.
[宫鹏. 遥感生态测量学 进展. 自然资源学报, 1999, 14(4): 51-54.]
[22] Krakauer N Y, Randerson J T. Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Global Biogeochemical Cycles, 2003, 17(4): 1118. doi:10.1029/2003GB002076
[23] Hunt E R J, Martin F, Running S. Simulating the effects of climatic variation on stem carbon accumulation of a Pinus ponderosa stand: Comparison with annual growth increment data. Tree Physiology, 1991, 9: 161-171.
[24] Hasenaur H, Nemani R R, Schadauer K et al. Forest growth response to hanging climate between 1961 and 1990 in Austria. Forest Ecology and Management, 1999, 122: 209-219.
[25] Graumlich L J, Brubaker L B, Grier C L. Long-term trends in forest net primary productivity: Cascade moutains, Washington. Ecology, 1989, 70(2): 405-410.
[26] Rathgeber C, Nicault A, Guiot J et al. Simulated responses of Pinus halepensis forest productivity to climate change and CO2 increase using a statistical model. Global and Planetary Change, 2000, 26: 405-421.
[27] Biondi F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications, 1999, 9(1): 216-227.
[28] LeBlanc D C. Spatial and temporal variation in the prevalence of growth decline in red spruce populations of the northeastern United States. Canadian Journal of Forest Research, 1992, 22: 1351-1363.
[29] Wu Xiangding, Shao Xuemei. A preliminary study on impact of climate change on tree growth using tree ring width data. Acta Geographica Sinica, 1996, 51(suppl.): 92-102.
[吴祥定, 邵雪梅. 采用树轮宽度资料分析气候变化对树木 生长量影响的尝试. 地理学报, 1996, 51(增刊): 92-101.]
[30] Wang Miao, Bai Shuju, Tao Dali et al. Effect of rise in air temperature on tree ring growth of forest on Changbai Mountain. Chinese Journal of Applaed Ecology, 1995, 6(2): 128-132.
[王淼, 白淑菊, 陶大力等. 大气增温对长白山林 木直径生长的影响. 应用生态学报, 1995, 6(2): 28-32.]
[31] Teng Ling, Peng Shaolin, Hou Aiming et al. Effect of air temperature change on the productivity of Pinus Massoniana population in Dinghushan. Journal of Tropical and Subtropical Botany, 2001, 9(4): 284-288.
[滕菱, 彭少麟, 侯爱敏等. 长期气候波动对鼎湖山马尾松种群生产力的影响. 热带亚热带植物学报, 2001, 9(4): 284-288.]
[32] Bouriaud O, Br伢da N, L Dupouey J et al. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Canadian Journal of Forest Research, 2005, 35(12): 2920-2933.
[33] Li Xuanran, Liu Qijing, Chen Yongrui. Aboveground biomass of three conifers in Qianyanzhou plantation. Chinese Jouanal of Applied Ecology, 2006, 17(8): 1382-1388.
[李轩然, 刘琪景, 陈永瑞等. 千烟洲人工林主要树种地上生物 量的估算. 应用生态学报, 2006, 17(8): 1382-1388.]
[34] Tu Jie, Liu Qijing. A simple method for stem growth analysis of slash pine in Qianyanzhou. Jiangxi Science, 2006, 24 (26): 466-470.
[涂洁, 刘琪景. 千烟洲湿地松树干生长量解析简捷方法探讨. 江西科学, 2006, 24(6): 466-470.]
[35] Clark D A, Brown S, Kicklighter D W, et al. Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 2001, 11:356-370.
[36] Fang Xi, Tian Dalan, Xiang Wenhua et al. On carbon accumulation, distribution of different densities in slash pine plantation. Journal of Zhejiang Forestry College, 2003, 20(4): 374-379.
[方晰, 田大伦, 项文化等. 不同密度湿地松人 工林中碳的积累与分配. 浙江林学院学报, 2003, 20(4): 374-379.]
[37] Fang Xi, Tian Dalan, Xiang Wenhua et al. Carbon dynamics and balance in the ecosystem of the young and middle-aged second-generation Chinese fir plantation. Journal of Central South Forestry University, 2002, 22(1): 1-6.
[方晰, 田大伦, 项文化等. 第二代杉木中幼林生态系统碳动态与平衡. 中南林学院学报, 2002, 22(1): 1-6.]
[38] Luo Yunjian, Zhang Xiaoquan. Carbon stock changes of successive rotations of plantations. Forest Research, 2006, 19 (6): 791-798.
[罗云建, 张小全. 多代连栽人工林碳贮量的变化. 林业科学研究, 2006, 19(6): 791-798.]
[39] Li Dacha. Studies of stand structures and biomass of Fokienia hodginsii and Cunninghamia lanceolata mixed forest and F. hodginsii and slash pine mixed forest. Journal of Fujian Forestry Science and Technology, 2004, 31(4): 51-53.
[ 李 大岔. 福建柏与杉木、湿地松混交林结构和生物量的研究. 福建林业科技, 2004, 31(4): 51-53.]
[40] Yang Yushen, Chen Guangshui, Wang Yixiang et al. Carbon storage and allocation in Castanopsis kawakamii and Cunninghamia lanceolata plantations in subtropical China. Scientia Silvae Sinicae, 2006, (10): 43-47.
[杨玉盛, 陈光水, 王义祥等. 格氏栲人工林和杉木人工林碳库及分配. 林业科学, 2006, (10): 43-47.]
[41] Wang Qiming. A preliminary study on the biomass and production of slash pine plantation in Jiangsu Province. Acta Phytoecologica et Geobotanica Sinica, 1990, 14(1): 1-12.
[汪企明. 江苏省湿地松人工林生物量的初步研究.植物生态 学与地植物学学报, 1990, 14(1): 1-12.]
[42] Zhang Jiawu, Feng Zongwei. The relationship of plantation density and prodution of Eliotis pine in hill area of Taoyuan county. In: Paper Collections of Eliotis Pine Plantation Ecosystem. Shenyang: Institute of Forest Soil of CAS, 1980. 201-208.
[张家武, 冯宗炜. 桃源县丘陵地区杉木造林密度与生物产量的关系. 杉木人工林生态学研究论文 集. 沈阳: 中国科学院林业土壤研究所, 1980. 201-208.]
[43] Zhang Lin, Huang Yong, Luo Tianxiang et al. Age effects on stand biomass allocations to different components: A case study in forests of Cunninghamia Lanceolata and Pinus Massoniana. Journal of the Graduate School of the Chinese Academy of Sciences, 2005, 22 (2): 170-178.
[张林, 黄永, 罗天祥等. 林分各器官生物量随林龄的变化规律: 以杉 木、马尾松人工林为例. 中国科学院研究生院学报, 2005, 22(2): 170-178.]
[44] Tian Dalun, Xiang Wenhua, Yan Wende. Comparison of biomass dynamic and nutrient cycling between Pinus massomiana plantation and slash pine plantation. Acta Ecologica Sinica, 2004, 24(10): 2207-2210.
[ 田大伦, 项文化, 闫文德.马尾松与湿地松人工林生物量动态及养分循环特征. 生态学报, 2004, 24(10): 2207-2210.]
[45] Wu Jing. Analysis on biomass and growth of eliotis pine, loblolly pine, slash pine. Journal of Jiangsu Forestry Science & Technology, 2005, 32(3): 33-35.
[吴静. 杉木与火炬松、湿地松混交林及其纯林的生物量、生长量测定分析. 江 苏林业科技, 2005, 32(3): 33-35.]
[46] Shen Wenqing, Liu Yunfeng, Ma Qingyan.et al. Carbon distribution, carbon store and carbon sink function of pineforest plantation. Practical Forestry Technology, 2006, (8): 5-8.
[沈文清, 刘允芬, 马钦彦等. 千烟洲人工针叶林碳素 分布、碳贮量及碳汇功能研究. 林业实用技术, 2006, (8): 5-8.]
[47] Ye Jinsheng. Establishment of relative tree height models for main tree species in Guangdong. Guangdong Forestry Science and Technology, 2006, 22(1): 26-31.
[叶金盛. 广东省主要树种相对树高曲线模型的研建. 广东林业科技, 2006, 22(1): 26-31.]
[48] Lv Yong, Li Jiping, Zhang Xiaolei. Height distribution model of Cunninghamia lanceolata artificial stand in Huitong County. Journal of Central South Forestry University, 1999, 19(1): 68-70.
[吕勇, 李际平, 张晓蕾. 会同杉木人工林的 树高分布模型. 中国林学院学报, 1999, 19(1): 68-70.]
[49] Shen Jiazhi. Establishment and application of relative tree height curve models for main tree species type in Ji'an City. Jiangxi Forest Science and Technology, 2002, (1): 16-19.
[沈家智. 吉安市主要树种类型相对树高曲线模型的应用研 究. 江西林业科技, 2002, (1): 16-19.]
[50] Ding Guijie. Study on standard height curve model of masson pine planted forests. Journal of Zhejiang Forestry College, 1997, 14(3): 225-230.
[丁贵杰. 马尾松人工林标准树高曲线模型的研究. 浙江林学院学报, 1997, 14(3): 225-230.]
[51] Wang Yihe. Studies on the relative height curve models of Pinus Massoniana plantations and on their application. Journal of Fujian Forestry Science and Technology, 2000, 27(1): 36-39.
[王益和. 马尾松人工林相对树高曲线模型及 其应用研究. 福建林业科技, 2000, 27(1): 36-39.]
/
〈 | 〉 |