Distributed Modeling of Global Solar Radiation of Rugged Terrain of the Yangtze River Basin

  • School of Remote Sensing of Nanjing University of Information Science and Technology; Nanjing 210044; China

Received date: 2010-01-08

  Revised date: 2010-03-22

  Online published: 2010-05-25

Supported by

National Natural Science Foundation for Young Scholars. No.S0508016001; Meteorological New Technologies Popularization Projects of the China Meteorological Administration. No.CMATG2006Z10; Meteorological Disaster Key Laboratory of Jiangsu Province, No.KLME050102


Based on the distributed model for calculating astronomical solar radiation of the rugged topography and the terrain shield model, by using meteorological observation data of the Yangtze River Basin (including the routine meteorological data and the solar radiation data), NOAA-AVHRR of remote sensing data (offering surface Aledo) and the digital elevation model (DEM) data with a resolution of 1 km × 1 km as a terrain response of the main data, a distributed direct solar radiation model, a distributed diffuse radiation model and a distributed terrain reflectance radiation model of the Yangtze River Basin are set up separately, and a distributed model for calculating global solar radiation over rugged terrains is developed for the Yangtze River basin. This paper deeply analyzes simulation results errors and variations of global solar radiation due to locality and terrains. The results suggest that the global solar radiation to be affected, owing to different seasons, is followed by spring > winter > summer > autumn and the impact degree was enhanced owing to increases of altitude, slope, latitude, trend, from the aspect perspective, the global solar radiation quantity over mountainous areas for the Yangtze Rive Basin influenced by local topographic factors has a clear spatial difference and subsists sunny slope (or southern slope) obviously larger than shady slope (or northern slope). Simulation error analysis shows that average absolute error of simulation is 13.04177 MJm-2, average relative error 3.655%, and in site authentication method shows an absolute error of simulation of 22.667 MJ m-2, while relative error of 4.867%.

Cite this article

WANG Li; QIU Xinfa; WANG Peifa; LIU Aili . Distributed Modeling of Global Solar Radiation of Rugged Terrain of the Yangtze River Basin[J]. Acta Geographica Sinica, 2010 , 65(5) : 543 -552 . DOI: 10.11821/xb201005004


[1] Weng Duming. Studies on Radiation Climate of China. Beijing: China Meteorological Press, 1997.[翁笃鸣. 中国辐射 气候. 北京: 气象出版社, 1997.]
[2] Qiu Xinfa. Distributed modeling of solar radiation over rugged terrains [D]. Nanjing: Nanjing University, 2003.[邱新 法. 起伏地形下太阳辐射分布式模型研究[D]. 南京: 南京大学博士学位论文, 2003.]
[3] Tang B, Li Z L, Zhang R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sensing of Environment, 2006, 103(1): 115-126.
[4] Van Laake P E, Sanchez-Azofeifa G A. Simplified atmospheric radiative transfer modeling for estimating incident PAR using MODIS atmosphere products.Remote Sensing of Environment, 2004, 91(1): 98-113.
[5] He Honglin, Yu Guirui, Liu Xin'an et al. Study on spatialization technology of terrestrial eco-information in China (II): Solar radiation. Journal of Natural Resources, 2004, 19(5): 679-687.[何洪林, 于贵瑞, 刘新安等. 中国陆地生态信息空 间化技术研究(II). 自然资源学报, 2004, 19(5): 679-687.]
[6] Steven M D. Standard distributions of clear sky radiance. Quart. J. Roy. Meteor. Soc., 1977, 103: 457-465.
[7] Temps R C, Coulsom K L. Solar radiation incident upon slope of different orientations. Solar Energy, 1977, 19: 179-184.
[8] Iqbal M. An Introduction to Solar Radiation. New York: Academic Press, 1983.
[9] Proy C D, Tanreá P, Deschamps Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ., 1989, 30: 21-32.
[10] Dozier J, Frew J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 1990, 28: 963-969.
[11] Zeng Yan, Qiu Xinfa, Liu Changming. Study on astronomical solar radiation distribution over the Yellow River basin based on DEM data. Acta Geographica Sinica, 2003, 58(6): 810-816.[曾燕, 邱新法, 刘昌明等. 基于DEM的黄河流 域天文辐射空间分布. 地理学报, 2003, 58(6): 810-816.]
[12] Liu B Y, Jordan R C. Daily insulation on surfaces tilted towards the equator. Trans ASHRAE, 1962, 67: 526-541.
[13] Hay J E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy, 1979, 23: 301-307.
[14] Hay J E, McKay D C. Estimating solar radiance on inclined surfaces: A review and assessment of methodologies. Int. J. Solar Energy, 1985, 3: 203-240.
[15] Li Xin, Cheng Guodong, Chen Xianzhang et al. the improved solar radiation model on arbitrary terrain conditions. Chinese Science Bulletin, 1999, 44(9): 993-998.[李新, 程国栋, 陈贤章等. 任意地形条件下太阳辐射模型的改进. 科 学通报, 1999, 44(9): 993-998.]
[16] Zeng Yan, Qiu Xinfa, Miao Qilong et al. The spatial and temporal distribution of insolation duration over rugged terrains in our country. Progress in Natural Science, 2003, 13(5): 545-548.[曾燕, 邱新法, 缪启龙等. 起伏地形下我国 可照时间的空间分布. 自然科学进展, 2003, 13(5): 545-548.]
[17] Li Zhanqing, Weng Duming. distribution characteristics and the computing model of the radiation scattering of slope. Meteorological Bulletin, 1988, 46(3): 349-356.[李占清, 翁笃鸣. 坡面散射辐射的分布特征及其计算模式. 气象学报, 1988, 46(3): 349-356.]
[18] Rahoma U A. Clearness index estimation for spectral composition of direct and global radiations. Applied Energy, 2001, 68: 337-346.
[19] Lagib N A, Alvi S H, Mansell M G. Correlationships between clearness index and relative sunshine duration for Sudan. Renewable Energy, 1999, 17(4): 473-498.
[20] Zuhairy A A, Sayigh A A M. Simulation and modeling of solar radiation in Saudi Arabia. Renewable Energy, 1995, 6 (2): 107-118.
[21] Antonic O. Modeling daily topographic solar radiation without site-specific hourly radiation data. Ecological Modeling, 1998, 113: 31-40.
[22]Kimball H H. Variations in the total and luminous solar radiation with geographical position in the United States. Mon. Weather Rev., 1919, 47: 769.
[23] Louche A, Notton G, Poggi P et al. Correlation for direct normal and globe horizontal irradiation on a French Mediterranean site. Solar Energy, 1991, 46(4): 261-266.
[24] Zeng Yan, Qiu Xinfa, Liu Changming et al. Distributed modeling of direct solar radiation of rugged terrain over the Yellow River Basin. Acta Geographica Sinica, 2005, 60(4): 680-688.[曾燕, 邱新法, 刘昌明等. 起伏地形下黄河流域 太阳直接辐射分布式模拟. 地理学报, 2005, 60(4): 680-688.]
[25] Liu B Y H, Jordan R C. The long-term average performance of flat-plate solar energy collections. Solar Energy, 1963, 7(2): 53-74.
[26] Bartoli B, Cuorno V, Amato U et al. Diffuse and beam components of daily global radiation in Geneva and Macerate. Solar Energy, 1982, 28(4): 307-311.
[27] Xu Xingkui, Liu Suhong. Deriving monthly means surface albedo. Meteorological Bulletin, 2002, 60(2): 216-219.[徐 兴奎, 刘素红. 中国地表月平均反照率的遥感反演. 气象学报, 2002, 60(2): 216-219.]
[28] Arnfield A J. A note on the diurnal, latitudinal and seasonal variation of surface reflection coefficient. Journal of Applied Meteorology, 1975, 14: 1603-1608.
[29] Morton F L. Operational estimates of areal evapotranspiration and theirsignificance to the science and practice. Journal of Hydrology, 1983, 66: 1-76.
[30] Valiente J A, Nunez M, Lopez-Baeza E et al. Narrow-band to broad-band conversion for Meteosat-visible channel and broad-band albedo using both AVHRR-1 and-2 channels. Int. J. Remote Sens., 1995, 16(6): 1147-1166.
[31] Qiu Xinfa, Qiu Yanping, Zeng Yan. Distributed simulation of month mean temperature in Chongqing mountain. Advances in Earth Science, 2009, 24(6): 621-628.[邱新法, 仇月萍, 曾燕. 重庆山地月平均气温分布式模拟研究. 地 球科学进展, 2009, 24(6): 621-628.]