Composition,Origin and Weathering Process of Surface Sediment in Kumtagh Desert,Northwest China

  • 1.School of Geographic and Oceanographic Sciences; Nanjing University; Nanjing 210093; China; 
    2.Institute of Desertification Studies; Chinese Academy of Forestry; Beijing 100091; China; 
    3.College of Earth and Environmental Sciences; Lanzhou University; Lanzhou 730000; China; 
    4.Lanzhou Institute of Arid Meteorology; China Meteorological Administration; Lanzhou 730020; China

Received date: 2009-08-10

  Revised date: 2009-10-03

  Online published: 2010-01-25

Supported by

China National S&T Basic Work Program, No.2006FY110800; National Undergraduate Innovation Program, No.081028413; National Natural Science Foundation of China, No.40930103]


The Kumtagh Desert is one of the eight biggest deserts in China.In this study,33 representative surface sediment samples were collected from Kumtagh Desert and analyzed in the laboratory to obtain composition of heavy mineral and content of geochemical elements.Results show that there are various kinds of heavy minerals in these samples,with large content of epidote and hornblende.Si and Al take up a large part of chemical composition.Compared with the average composition of geochemical elements of the upper continental crust(UCC),all elements except Si and Ca are depleted to a certain degree;Fe,Mg,Ca,P,Ti and Mn have high coefficients in their contents.Mineral composition of the samples of the Kumtagh Desert has a similarity with that of rocks of Altyn Tagh,surface sediments of the alluvial/fluvial fans of the Aityn Tagh and that of the Taklamakan Desert,indicating that one major source of the Kumtagh Desert sediments is located in Altyn Tagh.Alluvial deposits and lake sediments in Aqik valley and lower reaches of the Sule River are prone to be eroded and transported by the strong northeasterly wind to the Kumtagh Desert,as a result these places form another source of surface deposits of the Kumtagh Desert.A-CN-K ternary diagram shows that a weak chemical weathering by loss of Na and K occurred in these sediments,while other geochemical elements was in a less weathering or leaching process.A-CNK-FM ternary diagram suggests that Fe and Mg have distinct chemical differentiation.Physical weathering process makes it easy for mafic minerals to be eroded and enriched in fine particles,thus coarse desert sand particles can be relatively depleted in Fe and Mg.Mineral and geochemical composition of sediments in arid regions with less chemical weathering are mostly effected by physical processes.

Cite this article

XU Zhiwei1; LU Huayu1; ZHAO Cunfa1; WANG Xianyan1; SU Zhizhu2; WANG Zhenting3; LIU Hongyi4; WANG Lixin1; LU Qi2(1.School of Geographic and Oceanographic Sciences; Nanjing University; Nanjing 210093; China; 2.Institute of Desertification Studies; Chinese Academy of Forestry; Beijing 100091; China; 3.College of Earth and Environmental Sciences; Lanzhou University; Lanzhou 730000; China; 4.Lanzhou Institute of Arid Meteorology; China Meteorological Administration; Lanzhou 730020; China) . Composition,Origin and Weathering Process of Surface Sediment in Kumtagh Desert,Northwest China[J]. Acta Geographica Sinica, 2010 , 65(1) : 53 -64 . DOI: 10.11821/xb201001006


[1] Dong Guangrong. Formation and Evolution of China's Deserts, Climate Change and Desertification Research. Beijing: China Ocean Press, 2002. [董光荣. 中国沙漠形成演化气候变化与沙漠化研究. 北京: 海洋出版社, 2002.]
[2] E Youhao, Su Zhizhu, Wang Jihe et al. Outcome and scientific significance of integrated investigation in Kumtag Desert. Journal of Desert Research, 2006, 26(5): 693-697. [俄有浩, 苏志珠, 王继和等. 库姆塔格沙漠综合科学考察成 果初报. 中国沙漠, 2006, 26(5): 693-697.]
[3] Zheng H, Powell C, An Z et al. Pliocene uplift of the northern Tibetan Plateau. Geology, 2000, 28(8): 715-718. [4] Ritts B D, Biffi U. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geological Society of American Bulletin, 2000, 112(1): 61-74.
[5] Sun J M, Liu T S. The age of the Taklimakan Desert. Science, 2006, 312: 1621.
[6] Lu Huayu, Wang Xianyan, Li Langping. Aeolian dust records indicate the linkage of global cooling and Asian drying in late Cenozoic. Quaternary Sciences, 2008, 28(5): 949-956. [鹿化煜, 王先彦, 李郎平. 晚新生代亚洲干旱气候发展与全 球变冷联系的风尘沉积证据. 第四纪研究, 2008, 28(5): 949-956.]
[7] Xia Xuncheng. Basic character of Kumtag Desert//Lop Nor Comprehensive Scientific Expedition Team, Xinjiang Branch of Chinese Academy of Sciences. Lop Nor Scientific Expedition and Research. Beijing: Science Press, 1987: 52-59, 78-94. [夏训诚. 库姆塔格沙漠的基本特征//中国科学院新疆分院罗布泊综合科学考察队. 罗布泊科学考察与 研究. 北京: 科学出版社, 1987: 52-59, 78-94.]
[8] Wang Shuji. Formation of Aqik valley in the east of Lop Nor. Lop Nor Comprehensive Scientific Expedition Team, Xinjiang Branch of Chinese Academy of Sciences, Lop Nor Scientific Expedition and Research. Beijing: Science Press, 1987: 60-67. [王树基. 罗布泊东部阿齐克干谷的成因问题//中国科学院新疆分院罗布泊综合科学考察队. 罗布泊科学 考察与研究. 北京: 科学出版社, 1987: 60-67.]
[9] Qu Jianjun, Zuo Guochao, Zhang Kechun et al. Relationship between the formation and evolution of the Kumtag Desert and the regional Neotectonic movement. Arid Land Geography, 2005, 28(4): 424-428. [屈建军, 左国朝, 张克存 等. 库姆塔格沙漠形成演化与区域新构造运动关系研究. 干旱区地理, 2005, 28(4): 424-428.]
[10] E Youhao, Wang Jihe, Yan Ping et al. Evolution of palaeo-drainage system and its relationship with the formation of desert landform in the Kumtag Desert. Acta Geographica Sinica, 2008, 63(7): 725-734. [俄有浩, 王继和, 严平等. 库 姆塔格沙漠古水系变迁与沙漠地貌的形成. 地理学报, 2008, 63(7): 725-734.]
[11] Qu Jianjun, Liao Kongtai, Zu Ruiping et al. Study on formation mechanism of feather-shaped sand ridge in Kumtag Desert. Journal of Desert Research, 2007, 27(3): 349-354. [屈建军, 廖空太, 俎瑞平等. 库姆塔格沙漠羽毛状沙垄形 成机理研究. 中国沙漠, 2007, 27(3): 349-354.]
[12] Dong Z B, Qu J J, Wang X M et al. Pseudo-feathery dunes in the Kumtagh Desert. Geomorphology, 2008, 100(3-4): 328-334.
[13] He Qing, Yang Xinghua, Huo Wen et al. Characteristics of sand granularity from Kumtag Desert and its environmental significance. Journal of Desert Research, 2009, 29(1): 18-22. [何清, 杨兴华, 霍文等. 库姆塔格沙漠粒度分布特征及 环境意义. 中国沙漠, 2009, 29(1): 18-22.]
[14] Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology, 2004, 171(1-4): 1-11.
[15] Garzanti E, Vezzoli G, Andò S et al. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 2007, 258(3-4): 500-515.
[16] Nesbitt H, Young G. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 1996, 43(2): 341-358.
[17] Nesbitt H, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
[18] Muhs D. Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology, 2004, 59(1-4): 247-269.
[19] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299(21): 715-717.
[20] Ding Z L, Sun J M, Yang S L et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta, 2001, 65(6): 901-913.
[21] Chen J, An Z S, Liu L W et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5Ma and chemical weathering in the Asian inland. Science in China: Series D, 2001, 31(2): 136-145. [22] Újvári G, Varga A, Balogh-Brunstad Z. Origin, weathering, and geochemical composition of loess in southwesternHungary. Quaternary Research, 2008, 69(3): 421-437.
[23] Qian Yibing, Wu Zhaoning, Ishii T et al. The constituent characteristics of sand materials and sand sources of Taklamakan Desert. Journal of Desert Research, 1993, 13(4):32-38. [钱亦兵, 吴兆宁, 石井武政等. 塔克拉玛干沙漠 沙物质成分特征及其来源. 中国沙漠, 1993, 13(4):32-38.]
[24] Honda M, Shimizu H. Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands. Sedimentology, 1998, 45(6): 1125-1143.
[25] Yang X B, Zhu B Q, White P D. Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quaternary International, 2007, 175(1): 71-85.
[26] Qian Yibing, Zhou Xingjia, Li Chongshun et al. Multi-sources of sand minerals for the deserts in the Jungger Basin. Journal of Desert Research, 2001, 21(2): 182-187. [钱亦兵, 周兴佳, 李崇舜等. 准葛尔盆地沙漠沙矿物组成的多源 性. 中国沙漠, 2001, 21(2): 182-187.]
[27] Xie J, Ding Z L. Compositions of heavy minerals in northeastern China sandlands and provenance analysis. Science in China: Series D, 2007, 50(11): 1715-1723.
[28] Chen J, Li G J, Yang J D et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta, 2007, 71 (15): 3904-3914.
[29] Chen Guoying, Dai Xuerong, Zhang Mingjie. Study on the heavy minerals in the dustfall of the severe duststorm numbered 930505 in Lanzhou area, Gansu province. Journal of Desert Research, 1995, 15(4): 374-377. [陈国英, 戴雪 荣, 张铭杰. 兰州“930505”特大尘暴沉积物重矿物研究. 中国沙漠, 1995, 15(4): 374-377.]
[30] Zhang X Y, Zhang G Y, Zhu G H et al. Elemental tracers for Chinese source dust. Science in China: Series D, 1996, 26(5): 423-430.
[31] Bory A M, Biscaye P E, Svensson A et al. Seasonal variability in the origin of recent atmospheric mineral dust at North GRIP , Greenland. Earth and Planetary Science Letters, 2002, 196(3/4): 123-134. [32] Xuan J, Sokolik I N. Characterization of sources and emission rates of mineral dust in Northern China. Atmospheric Environment, 2002, 36(31): 4863-4876.
[33] Jickells T D, An Z S, Andersen K K et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308: 67-71.
[34] Zhang X Y, Wang Y Q, Wang D et al. Characterization and sources of regional-scale transported carbonaceous and dust aerosols from different pathways in coastal and sandy land areas of China. Journal of Geophysical Research, 110 (D15): D15301.
[35] Mei F M, Rajot J, Alfaro S et al. Validating a dust production model by field experiment in Mu Us Desert, China. Chinese Science Bulletin, 2006, 51(7): 878-884.
[36] Blatt H, Middleton G, Murray R. Origin of Sedimentary Rocks. Prentice-Hall, Inc, 1980.
[37] Johnsson M J, Stallard R F, Meade R H. First-cycle quartz arenites in the Orinoco River Basin, Venezuela and Colombia. Journal of Geology, 1988, 96: 263-277.
[38] Johnsson M J, Stallard R F, Lundberg N. Controls on the composition of fluvial sands from a tropical weathering environment. Geological Society of America Bulletin, 1991, 103(12): 1622-1647.
[39] Young G, Nesbitt H. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research, 1998, 68(3): 448-455.
[40] Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology, 2007, 240(3-4): 280-297.
[41] Chen J, Ji J F, Chou G et al. Geochemistry of the chemical weathering intensity of the loess profile in Luochuan, Shaanxi Province. Science in China: Series D, 1997, 27(6):531-536.
[42] Li Xusheng, Han Zhiyong, Yang Shouye et al. Chemical weathering intensity and element migration features of the Xiashu Loess profile in Zhenjiang. Acta Geographica Sinica, 2007, 62(11): 1174-1184. [李徐生, 韩志勇, 杨守业等. 镇江下蜀土剖面的化学风化强度与元素迁移特征. 地理学报, 2007, 62(11): 1174-1184.]
[43] Chen Jingsheng, Deng Baoshan, Tao Shu et al. Environmental Geochemistry. Beijing: China Ocean Press, 1990: 84. [陈静生, 邓宝山, 陶澍等. 环境地球化学. 北京: 海洋出版社, 1990: 84.]
[44] Chen Yang, Chen Jun, Liu Lianwen. Chemical composition and characterization of chemical weathering of late Tertiary red clay in Xifeng, Gansu Province. Journal of Geomechanics, 2001, 7(2): 167-175. [陈旸, 陈骏, 刘连文. 甘 肃西峰晚第三纪红粘土的化学组成及化学风化特征. 地质力学学报, 2001, 7(2): 167-175.]
[45] Shi Yuxin, Dai Xuerong, Li Jietong et al. On the wind-blown deposits from a heavy dust fall numbered “930505” in Lanzhou, North-Central China. Acta Sedimentologica Sinica, 1995, 13(3): 76-82. [师育新, 戴雪荣, 李节通等. 兰州 “930505”特大尘暴沉积物特征研究. 沉积学报, 1995, 13(3): 76-82.]
[46] Xie Yuanyun, He Kui, Zhou Jia et al. Chemical characteristic of dust storm deposits in Harbin and its matter origin.Geographical Research, 2006, 25(2): 255-261. [谢远云, 何葵, 周嘉等. 哈尔滨沙尘暴的化学特征及其物质源探讨. 地 理研究, 2006, 25(2): 255-261.]
[47] Zhang Song, Liu Ping, Jin Chunsheng et al. Geochemistry of the heavy dust fall on 17 April 2006 in Beijing. Marine Geology & Quaternary Geology, 2008, 28(3): 36-42. [张菘, 刘平, 靳春胜等. 2006 年4 月17 日北京特大降尘的地球 化学特征. 海洋地质与第四纪地质, 2008, 28(3): 36-42.]
[48] Li Xusheng, Han Zhiyong, Chen Yingyong et al. Characteristics and source of rain dust in Nanjing on March 11, 2006. Quaternary Sciences, 2009, 29(1): 43-54. [李徐生, 韩志勇, 陈英勇等. 2006 年3 月11 日南京“泥雨”降尘特征 及其粉尘来源. 第四纪研究, 2009, 29(1): 43-54.]
[49] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. London: Blackwell, 1985, 277. [50] McLennan S M. Weathering and global denudation. Journal of Geology, 1993, 101: 295-303.
[51] Turekian K K, Wedepohl K H. Distribution of the elements in major units of the earth crust. Bulletin of the Geological Society of America, 1961, 72(2): 175-192.