Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981-2010

Expand
  • Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2012-06-12

  Revised date: 2012-07-18

  Online published: 2012-11-20

Supported by

The "Strategic Priority Research Program" of the Chinese Academy of Sciences, No.XDA05090304; Project for Public Service from Ministry of Environmental Protection of China, No.201009056; National Key Technology Research and Development Program, No.2009BAC61B05

Abstract

To quantify the impact of climate change on the evapotranspiration process of alpine ecosystems on the Tibetan Plateau, we performed a series of simulations with the LPJ dynamic vegetation model and 80 meteorological stations from 1981 to 2010. Changes in actual evapotranspiration and the difference between precipitation and actual evapotranspiration (P-E) on the Tibetan Plateau were analyzed. Over the last 30 years, climate change was characterized by significantly increased temperature, slightly increased precipitation and decreased potential evapotranspiration which was significant before 2000. Actual evapotranspiration had increasing trends in most parts of the Tibetan Plateau, and P-E mainly had decreasing trends in southeastern plateau and increasing trends in northwestern plateau. Descending atmospheric water demand would lead to a decreasing trend in actual evapotranspiration; however, it increased in most regions due to more precipitation. Actual evapotranspiration increased (decreased) in most regions where there was 86% (73%) of increased (decreased) precipitation.

Cite this article

YIN Yunhe, WU Shaohong, ZHAO Dongsheng, ZHENG Du, PAN Tao . Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981-2010[J]. Acta Geographica Sinica, 2012 , 67(11) : 1471 -1481 . DOI: 10.11821/xb201211004

References

[1] Nemani R R, White M A, Thornton P et al. Recent trends in hydrologic balance have enhanced the terrestrial carbonsink in the United States. Geophysical Research Letters, 2002, 29(10), doi: 10.1029/2002GL014867.

[2] Brutsaert W. Hydrology: An Introduction. New York: Cambridge University Press, 2005.

[3] Jung M, Reichstein M, Ciais P et al. Recent decline in the global land evapotranspiration trend due to limited moisturesupply. Nature, 2010, 467(7318): 951-954.

[4] Schimel D S, Braswell B H, Parton W J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedingsof the National Academy of Sciences of the United States of America, 1997, 94(16): 8280-8283.

[5] Cox P M, Betts R A, Jones C D et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupledclimate model. Nature, 2000, 408(6809): 184-187.

[6] Allen R G, Pereira L S, Howell T A et al. Evapotranspiration information reporting: I. Factors governing measurementaccuracy. Agricultural Water Management, 2011, 98(6): 899-920.

[7] Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, andclimatic variability. Reviews of Geophysics, 2012, doi: 10.1029/2011RG000373.

[8] Liu Chunzhen. The issues in the impact study of climate change on the terrestrial hydrological cycle. Advance in EarthSciences, 2004, 19(1): 115-119. [刘春蓁. 气候变化对陆地水循环影响研究的问题. 地球科学进展, 2004, 19(1):115-119.]

[9] Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: II. Energybalance and interpretation. Geography Compass, 2009, 3(2): 761-780.

[10] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 396(6706): 29-30.

[11] Hobbins M T, Ramirez J A, Brown T C. Trends in pan evaporation and actual evapotranspiration across theconterminous U.S.: Paradoxical or complementary? Geophysical Research Letters, 2004, 31: L13503.

[12] Ohmura A, Wild M. Is the hydrological cycle accelerating? Science, 2002, 298: 1345-1346.

[13] Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength. Nature, 1995, 377(6551): 687-688.

[14] Wang Shaowu, Ye Jinlin, Gong Daoyi et al. Construction of mean annual temperature series for the last one hundredyears in China. Quarterly Journal of Applied Meteorology, 1998, 9(4): 392-401. [王绍武, 叶瑾琳, 龚道溢等. 近百年中国年气温序列的建立. 应用气象学报, 1998, 9(4): 392-401.]

[15] Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its environmental effects. Advances in Earth Science, 2006,21(5): 451-458. [郑度, 姚檀栋. 青藏高原隆升及其环境效应. 地球科学进展, 2006, 21(5): 451-458.]

[16] Cheng Guodong, Zhao Chuanyan, Wang Yao. Advances in researches of ecological and hydrological processes in theforest ecosystem in inland river basin of the arid regions, China. Advances in Earth Science, 2011, 26(11):1125-1130. [程国栋, 赵传燕, 王瑶. 内陆河流域森林生态系统生态水文过程研究. 地球科学进展, 2011, 26(11):1125-1130.]

[17] Sitch S, Smith B, Prentice I C et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cyclingin the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9(2): 161-185.

[18] Gerten D, Schaphoff S, Haberlandt U et al. Terrestrial vegetation and water balance: Hydrological evaluation of adynamic global vegetation model. Journal of Hydrology, 2004, 286(1-4): 249-270.

[19] Doherty R M, Sitch S, Smith B et al. Implications of future climate and atmospheric CO2 content for regionalbiogeochemistry, biogeography and ecosystem services across East Africa. Global Change Biology, 2010, 16(2):617-640.

[20] Kaplan J O, Krumhardt K M, Zimmermann N E. The effects of land use and climate change on the carbon cycle ofEurope over the past 500 years. Global Change Biology, 2012, 18(3): 902-914.

[21] Morales P, Sykes M T, Prentice I C et al. Comparing and evaluating process-based ecosystem model predictions ofcarbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11(12): 2211-2233.

[22] Tao F L, Zhang Z. Dynamic response of terrestrial hydrological cycles and plant water stress to climate change inChina. Journal of Hydrometeorology, 2011, 12(3): 371-393.

[23] Mahecha M D, Reichstein M, Jung M. Comparing observations and process-based simulations of biosphereatmosphereexchanges on multiple timescales. Journal of Geophysical Research-Biogeosciences, 2010, 115: 21.

[24] Zheng Du, Yang Qinye, Wu Shaohong et al. Chinese Ecogeographical Regionalization Research. Beijing: TheCommercial Press, 2008. [郑度, 杨勤业, 吴绍洪等. 中国生态地理区域系统研究. 北京: 商务出版社, 2008.]

[25] Yan Hong. Spline interpolation of spatial-temporal climate data for China. Geography and Geo-Information Science,2003, 19(5): 27-31. [阎洪. 气侯时空数据的样条插值与应用. 地理与地理信息科学, 2003, 19(5): 27-31.]

[26] Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines. International Journal of GeographicalInformation Science, 1995, 9(4): 385-403.

[27] Zhao D S, Wu S H, Yin Y H et al. Vegetation distribution on Tibetan Plateau under climate change scenario. RegionalEnvironmental Change, 2011, 11(4): 905-915.

[28] Zhao Dongsheng, Wu Shaohong, Yin Yunhe. Variation trends of natural vegetation net primary productivity in Chinaunder climate change scenario. Chinese Journal of Applied Ecology, 2011, 22(4): 897-904. [赵东升, 吴绍洪, 尹云鹤.气候变化情景下中国自然植被净初级生产力分布. 应用生态学报, 2011, 22(4): 897-904. ]

[29] Western A W, Grayson R B, Blöschl G. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earthand Planetary Sciences, 2002, 30(1): 149-180.

[30] Yin Y H, Wu S H, Zheng D et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference cropevapotranspiration in China. Agricultural Water Management, 2008, 95: 77-84.

[31] Allen R G, Pereira L S, Raes D et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.FAO Irrigation and Drainage Paper 56, 1998.

[32] Wu Shaohong, Yin Yunhe, Zheng Du et al. Climate changes in the Tibetan Plateau during the last three decades. ActaGeographica Sinica, 2005, 60(1): 3-11. [吴绍洪, 尹云鹤, 郑度等. 青藏高原近30 年气候变化趋势. 地理学报, 2005,60(1): 3-11. ]

[33] Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation: methods andillustrations. International Journal of Climatology, 1996, 16(4): 361-377.

[34] Zhang Y Q, Liu C M, Tang Y H et al. Trends in pan evaporation and reference and actual evapotranspiration acrossthe Tibetan Plateau. Journal of Geophysical Research, 2007, 112: D12110, doi: 10.1029/2006JD008161.

[35] National Assessment Report on Climate Change Compiling Committee. Second National Assessment Report on Climate Change. Beijing: Science Press, 2011. [气候变化国家评估报告编写委员会. 第二次气候变化国家评估报告.北京: 科学出版社, 2011.]
Outlines

/