Acta Geographica Sinica ›› 2019, Vol. 74 ›› Issue (5): 948-961.doi: 10.11821/dlxb201905009
• Climate Change and Surface Processes • Previous Articles Next Articles
SU Weizhong1,RU Jingjing1,2,YANG Guishan1
Received:
2018-03-12
Revised:
2018-07-30
Online:
2019-05-25
Published:
2019-05-24
Supported by:
SU Weizhong,RU Jingjing,YANG Guishan. Modelling stormwater management based on infiltration capacity of land use in the watershed scale[J].Acta Geographica Sinica, 2019, 74(5): 948-961.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data sources in this study
数据名称 | 数据来源 | 数据加工 | 所需数据成果 |
---|---|---|---|
用地类型 | 中科院南京地理与湖泊研究所太湖流域土地利用遥感调查与监测数据库(1985-2015年) | 采用1985年和2015年TM/ETM影像解译和地面调查结合方法,影像时间为5月、7月、11月,提取耕地、湿地、乔木、园地、草地、水体、湿地、城市、乡村、工矿和未利用地等10个类型。该数据遥感图像解译时采用人机交互的土地利用变化分类判读方式。 | 合并为耕地、林地、园草地、建设、水面、未利用等6类 |
土壤 | 中国科学院土壤研究所 | 第二次土壤普查资料(1979-1982年)土壤颗粒组成和土壤质地等,土壤化学性质和土壤养分等属性。 | 进行土壤ABCD类划分 |
河网 | 中国科学院湖泊流域数据集成与模拟中心1982年1∶25万河流数据和1985年1∶5万地形数据。 | 根据1∶25万河流数据样图选取相应河流,基于1985年1∶5万地形数据手工绘制并赋予编码和河流名称;按照河流长度宽度大小确定河流级别、源头和流向[ | 1级对应长江,2、3、4级对应市、县、村镇级河流 |
小流域及 坡度 | 中国科学院湖泊流域数据集成与模拟中心30 m分辨率DEM数据和部分地区圩区数据。 | 山区利用DEM数据采用D8算法ArcGIS获取;平原区以圩区边界为分区单元;其他以骨干河道(二级河流)、城镇和农村圩区边界判别,采用人工修正方式建立[ | 提取490个小流域。 |
气象水文 | 中国科学院南京地理与湖泊研究所太湖流域土地利用遥感调查与监测数据库 | 1959-2012年太湖流域及周边15个气象站日降雨数据,包括南京(58238)、高邮(58241)、南通(58259)、吕泗(58265)、常州(58343)、溧阳(58345)、宜兴(58346)、东山(58358)、宝山(58362)、宁国(58436)、杭州(58457)、平湖(58464)、慈溪(58467)、嵊泗(58472)、嵊县(58556)。 | 计算各站点年均暴雨强度和暴雨频率等,进行相应数据空间插值 |
Tab. 4
The land use-infiltration areas based on the CNc-CLI15 in Taihu Lake watershed
CLI15区段(%) | 39以上 | 25~39 | 15~24 | 15以下 |
---|---|---|---|---|
CLI15均值(%) | 54.33(80.47*) | 31.93 | 19.50 | 1.34(0~8%); 11.48(8%~15%) |
CLIr均值(%) | 27.33(10.01*) | 21.73 | 10.82 | 0.35(0~8%); 5.07(8%~15%) |
CNc增减(%) | -0.03(1.12*)总体减少 | 减少最多4.04 | -0.25 | 0.35(0~8%); 3.34(8%~15%) |
CNc特征** | 离散型增减差异大;调蓄潜力低 | 集中型减少为主;调蓄潜力较大 | 离散型增减差异大;调蓄弹性大 | 集中型减少为主(0除外);调蓄容量大 |
作用位置 | 地级市老城区和开发完善新区,沿江经济开发区 | 部分老城区和大部分新区及开发区、乡镇 | 主要乡镇和农村区域 | 农村区域与山区、湖荡 |
作用方式 | 建设占用耕地,外延扩展—内部填充;绿地增加 | 建设占用耕地、林地和绿地,分散扩展为主 | 建设占用耕地、绿地;耕地新增 | 旅游建设;林地变成园地;耕地变水域 |
雨洪影响 | 上游开发导致过境洪水剧增;过境河流沿线及支流低洼地城市内涝 | 调蓄功能退化,管网设计不足;低洼区内涝频发,受纳水体回流 | 圩区分割河流系统;沿河低洼地流域性洪涝显著 | 调蓄区减少,增加下游排洪压力;洪涝不显著,河流季节性断流 |
土地利用 调蓄类型 | -调蓄减少A1 -调蓄空间提升区A2*** | 调蓄空间减少区B | -调蓄减少区C1 -调蓄增加区C2 | -调蓄减少区D1 -绿地恢复区域D2**** |
Tab. 5
The strategy models of land use-infiltration
土地利用调蓄类型 | A类型区 | B类型区 | C类型区 | D类型区 |
---|---|---|---|---|
战略模式 | 土地利用调蓄创建(Offensive),在调蓄功能非友好的建设用地基质下,增加或改善调蓄要素,恢复一定调蓄功能。 | 土地利用调蓄防御(Defensive),开发与保护矛盾突出,确保最基本的生态要素和效益,开发控制与生态保护的关键协调区。 | 土地利用调蓄拓展(Expansive),总体生态格局良好,但有机会拓展其功能。 | 土地利用调蓄保护(Protective),现有生态格局支持可持续,保护提升现有质量和效益。 |
控制要素 | 城市水系、道路广场、小区/建筑、排水管网、受纳河流水体。 | 流域建设用地、渗透面、低洼区、水系,城市道路,小区域建筑。 | 流域建设、农业、生态空间,主要是农业空间。 | 流域主要植被、可渗透土壤、水系,少量耕地。 |
开发控制 | 优化城乡建设用地结构和布局:盘活存量、集约高效、优化布局,新增建设以填充式开发为主,提高其准入门槛。 | 构建城乡集聚集约空间框架:保障新增建设用地供给,整合传统工业和农村等存量用地,提高人口和产业集聚强度。 | 协调耕地—建设—生态空间:稳定农业空间,合理控制开发强度和规模,适度增加生态空间。 | 优先布局生态空间:稳定自然用地;严格控制新增建设空间,禁止扩大现有工业集中区面积。 |
调蓄保护 | 自然修复重要河段和地区,自然生态要素增加及孤立要素链接。 | 辨识海绵城市建设重点区,划定城市增长边界、耕地红线和生态红线。 | 稳定耕地连片区,结合绿道拓展耕地生态功能。 | 稳定生态红线,优化生态空间结构布局,提升滞留渗透质量。 |
综合管理 | 辨识重要内涝地段,提升排水能力为主:A1区排水能力提升措施为主;A2区雨水收集储存,受纳水体修复,包括屋顶—洼地绿化,防洪防水隔水设计。 | 土地利用—洪涝管理分区整合,以减少雨水径流和峰值为目的开发块选址与场地布局;优先选用峰值削减效果较优的雨水储存和调节,提高渗透的能力。 | 圩区改造,洪涝风险分区,耕地保护区,高地规避区,流域排水通道修复,滨水防洪堤坝,水位预警。 | 上游水敏感区,拦洪蓄容建设,中游坡面耕地保护区,下游应急与洪涝规避区,水闸调控(工程措施)。 |
[1] |
Pauleit S, Ennos R, Golding Y . Modeling the environmental impacts of urban land use and land cover change: A study in Merseyside, UK. Landscape and Urban Planning, 2005,71(2):295-310.
doi: 10.1016/S0169-2046(04)00083-0 |
[2] | Chaves M L, Camozzato A L, Eizirik C L , et al. Predictors of normal and successful aging among urban-dwelling elderly Brazilians. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2009,64(5):597-602. |
[3] |
Su W Z, Gu C L, Yang G S , et al. Measuring the impact of urban sprawl on natural landscape pattern of the western Taihu Lake Watershed. Landscape and Urban Planning, 2010,95(1):61-67.
doi: 10.1016/j.landurbplan.2009.12.003 |
[4] |
Haase D . Effects of urbanisation on the water balance: A long-term trajectory. Environmental Impact Assessment Review, 2009,29(4):211-219.
doi: 10.1016/j.eiar.2009.01.002 |
[5] |
Su W Z, Ye G B, Yao S M , et al. Urban land pattern impacts on floods in a new district of China. Sustainability, 2014,6(10):6488-6508.
doi: 10.3390/su6106488 |
[6] | United Nations , Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2014 Revision. New York: United Nations, 2015. |
[7] |
Su W Z . Measuring the past 20 years of urban-rural land growth in flood-prone areas in the developed Taihu Lake watershed, China. Frontiers of Earth Science, 2017,11(2):1-11.
doi: 10.1007/s11707-016-0573-4 |
[8] |
Delleur J W . The evolution of urban hydrology: Past, present, and future. Journal of Hydraulic Engineering, 2003,129(8):563-573.
doi: 10.1061/(ASCE)0733-9429(2003)129:8(563) |
[9] |
Brabec E A . Imperviousness and land-use policy: Toward an effective approach to watershed planning. Journal of Hydrologic Engineering, 2009,14(4):425-433.
doi: 10.1061/(ASCE)1084-0699(2009)14:4(425) |
[10] |
Shuster W D, Bonta J, Thurston H , et al. Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2005,2(4):263-275.
doi: 10.1080/15730620500386529 |
[11] |
Schueler T R , Fraley-McNeal L, Cappiella K. Is impervious cover still important? Review of recent research. Journal of Hydrologic Engineering, 2009,14(4):309-315.
doi: 10.1061/(ASCE)1084-0699(2009)14:4(309) |
[12] | Coffmann L S . Low-impact development design: A new paradigm for stormwater management mimicking and restoring the natural hydrologic regime: An alternative stormwater management technology. Escoamento De Água De Chuva, 2011: 1-158. |
[13] |
Mejía A I, Moglen G E . Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrological Processes, 2010,24(23):3359-3373.
doi: 10.1002/hyp.v24:23 |
[14] |
van Roon M . Low impact urban design and development: Catchment-based structure planning to optimise ecological outcomes. Urban Water Journal, 2011,8(5):293-308.
doi: 10.1080/1573062X.2011.598172 |
[15] |
Vörösmarty C J, Green P, Salisbury J , et al. Global water resources: Vulnerability from climate change and population growth. Science, 2000,289(5477):284.
doi: 10.1126/science.289.5477.284 |
[16] |
Pielke R A . Land use and climate change. Science, 2005,310(5754):1625-1626.
doi: 10.1126/science.1120529 |
[17] |
Isidoro J M, de Lima J L, Leandro J . Influence of wind-driven rain on the rainfall-runoff process for urban areas: Scale model of high-rise buildings. Urban Water Journal, 2012,9(3), 199-210.
doi: 10.1080/1573062X.2012.654801 |
[18] |
Shohan S A, Slobodan P S . Spatial and temporal analysis of urban flood risk assessment. Urban Water Journal, 2013,10(1):26-49
doi: 10.1080/1573062X.2012.690437 |
[19] | Jha A K, Bloch R, Lamond J . Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. Washington D C: The World Bank, 2012, 885-887. |
[20] |
Mentens J, Raes D, Hermy M . Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 2006,77(3):217-226.
doi: 10.1016/j.landurbplan.2005.02.010 |
[21] |
Nie L, Lindholm O, Lindholm G . Impacts of climate change on urban drainage systems: A case study in Fredrikstad, Norway. Urban Water Journal, 2009,6(4):323-332.
doi: 10.1080/15730620802600924 |
[22] |
Ahmad S S, Simonovic S P . Spatial and temporal analysis of urban flood risk assessment. Urban Water Journal, 2013,10(1):26-49.
doi: 10.1080/1573062X.2012.690437 |
[23] | Zhou Hongjian, Shi Peijun, Wang Jingai , et al. River network change and its ecological effects in Shenzhen Region in Recent 30 Years. Acta Geographica Sinica, 2008,63(9):969-980. |
[ 周洪建, 史培军, 王静爱 , 等. 近30年来深圳河网变化及其生态效应分析. 地理学报, 2008,63(9):969-980.] | |
[24] | Yang Kai, Yuan Kai, Zhao Jun , et al. Stream structure characteristics and its urbanization responses to tidal river System. Acta Geographica Sinica, 2004,59(4):557-564. |
[ 杨凯, 袁雯, 赵军 , 等. 感潮河网地区水系结构特征及城市化响应. 地理学报, 2004,59(4):557-564.] | |
[25] |
Li Lijuan, Jiang Dejuan, Li Jiuyi , et al. Advances in hidrological response to land use/land cover change. Journal of Natural Resources, 2007,22(2):211-224.
doi: 10.11849/zrzyxb.2007.02.008 |
[ 李丽娟, 姜德娟, 李九一 , 等. 土地利用/覆被变化的水文效应研究进展. 自然资源学报, 2007,22(2):211-224.]
doi: 10.11849/zrzyxb.2007.02.008 |
|
[26] | Su Weizhong, Yang Guishan, Chen Shuang . An empirical analysis of urbanization spatial process and its ecological effect in Western Taihu Lake Watershed of China. Acta Ecologica Sinica, 2008,28(9):4306-4312. |
[ 苏伟忠, 杨桂山, 陈爽 . 太湖流域湖西区城市化空间过程及其生态效应. 生态学报, 2008,28(9):4306-4312.] | |
[27] | Su Weizhong, Yang Guishan, Chen Shuang . The impact of urban spatial expansion on regional environment of flood hazards gestation. Resources Science, 2012,34(5):933-939. |
[ 苏伟忠, 杨桂山, 陈爽 . 城市空间扩展对区域洪涝孕灾环境的影响. 资源科学, 2012,34(5):933-939.] | |
[28] | Gao Junfeng, Wen Yuhua . Impact of land use change on runoff of Taihu basin. Acta Geographica Sinica, 2002,57(2):194-200. |
[ 高俊峰, 闻余华 . 太湖流域土地利用变化对流域产水量的影响. 地理学报, 2002,57(2):194-200.] | |
[29] |
Zheng Jing, Fang Weihua, Shi Peijun , et al. Modeling the impact of land use change on hydrological processes in fast Urbanizing region: A case of the Buji watershed in Shenzhen city, China. Journal of Natural Resources, 2009,24(9):1560-1572.
doi: 10.11849/zrzyxb.2009.09.006 |
[ 郑璟, 方伟华, 史培军 , 等. 快速城市化地区土地利用变化对流域水文过程影响的模拟研究: 以深圳市布吉河流域为例. 自然资源学报, 2009,24(9):1560-1572.]
doi: 10.11849/zrzyxb.2009.09.006 |
|
[30] |
Chen Jiang, Yang Kai, Liu Lanlan , et al. Impact of 60 years land use change on rainfall in central Shanghai. Journal of Natural Resources, 2010,25(6):914-925.
doi: 10.11849/zrzyxb.2010.06.004 |
[ 程江, 杨凯, 刘兰岚 , 等. 上海中心城区土地利用变化对区域降雨径流的影响研究. 自然资源学报, 2010,25(6):914-925.]
doi: 10.11849/zrzyxb.2010.06.004 |
|
[31] | Li Na, Yuan Wen . Characteristics, cause factors, and influnce mechanism of flood and water logging in Shanghai. Journal of Natural Disasters, 2011,20(1):37-45. |
[ 李娜, 袁雯 . 上海洪涝灾害发生特征、致灾因子及影响机制研究. 自然灾害学报, 2011,20(1):37-45.] | |
[32] | Xu Jintao, Xu Youpeng, Ye Zhengwei . Observation and simulation of hydrological processes in urban districts: A case study of Anji experimental district in the Xitiaoxi watershed of Taihu basin. Resources and Environment in the Yangtze Basin, 2011,20(4):445-450. |
[ 徐金涛, 许有鹏, 叶正伟 . 城镇化地区水文过程实验观测与模拟: 以太湖西苕溪流域安吉实验小区为例. 长江流域资源与环境, 2011,20(4):445-450.] | |
[33] | Wang Yuefeng, Xu Youpeng, Zhang Qianyu , et al. Influence of stream structure change on regulation capacity of river networks in Taihu Lake basin. Acta Geographica Sinica, 2016,71(3):449-458. |
[ 王跃峰, 许有鹏, 张倩玉 , 等. 太湖平原区河网结构变化对调蓄能力的影响. 地理学报, 2016,71(3):449-458.] | |
[34] | Su Weizhong, Chen Weixiao, Guo Wei , et al. The occupation of river network by urban-rural land expansion in Taihu basin, China. Journal of Natural Resources, 2016,31(8):1289-1301. |
[ 苏伟忠, 陈维肖, 郭葳 , 等. 太湖流域城乡用地扩张对河网的空间占用机制初探. 自然资源学报, 2016,31(8):1289-1301.] | |
[35] | Yu Wenjin, Yan Yonggang, Lv Haiyan , et al. GIS-based quantitative research on the risk of rainstorm and flood disaster in Taihu basin. Journal of Catastrophology, 2011,26(4):1-7. |
[ 于文金, 闫永刚, 吕海燕 , 等. 基于GIS的太湖流域暴雨洪涝灾害风险定量化研究. 灾害学, 2011,26(4):1-7.] | |
[36] | Su Weizhong, Yang Guishan, Zhen Feng . Ecological land fragmentation and its connectivity with urbanization in the Yangtze River Delta. Acta Geographica Sinica, 2007,62(12):1309-1317. |
[ 苏伟忠, 杨桂山, 甄峰 . 长江三角洲生态用地破碎度及其城市化关联. 地理学报, 2007,62(12):1309-1317.] | |
[37] | Mishra S K, Singh V P . Soil Conservation Service Curve Number (SCS-CN) Methodology. Springer Netherlands, 2003, 355-362. |
[38] |
Wan Rongrong, Yang Guishan . The influence of land-use and land-cover on flood peak: A case study of Xitiaoxi river basin in the headwater region of Taihu Lake. Journal of Natural Resources, 2009,24(2):318-327.
doi: 10.11849/zrzyxb.2009.02.017 |
[ 万荣荣, 杨桂山 . 流域土地利用/覆被对洪峰的影响研究: 以太湖上游西苕溪流域为例. 自然资源学报, 2009,24(2):318-327.]
doi: 10.11849/zrzyxb.2009.02.017 |
|
[39] | Chen Ying, Xu Youpeng, Yin Yixing . Assessment of effects of land use changes on storm runoff generation: A case study of Xitiaoxi Basin. Scientia Geographica Sinica, 2009,29(1):117-123. |
[ 陈莹, 许有鹏, 尹义星 . 土地利用/覆被变化下的暴雨径流过程模拟分析: 以太湖上游西苕溪流域为例. 地理科学, 2009,29(1):117-123.] | |
[40] | Parkinson J. Urban Stormwater Management in Developing Countries. UK: IWA Publishing, 2013. |
[1] | TONG Rongxin, LIANG Xun, GUAN Qingfeng, SONG Yu, CHEN Yuling, WANG Qinyi, ZHENG Lina, JIN Qun, YU Yanping, HE Jie, XIONG Xuehui, LIAO Weilin. Estimation of soil carbon storage change from land use and management at a high spatial resolution in China during 2000-2020 [J]. Acta Geographica Sinica, 2023, 78(9): 2209-2222. |
[2] | YANG Shiqi, WANG Ji, DOU Yinyin, LUAN Qingzu, KUANG Wenhui. Spatio-temporal evolution of urbanization and its relationship with regional climate change in Beijing over the past century [J]. Acta Geographica Sinica, 2023, 78(3): 620-639. |
[3] | LYU Guowei, ZHOU Jianchun, CAI Yumei, MENG Chao, LI Shengfa, CHEN Weilian. Carbon accounting for land use, land-use change and forestry in Guangdong province [J]. Acta Geographica Sinica, 2023, 78(3): 640-657. |
[4] | KUANG Wenhui, ZHANG Shuwen, DU Guoming, YAN Changzhen, WU Shixin, LI Rendong, LU Dengsheng, PAN Tao, NING Jing, GUO Changqing, DONG Jinwei, BAO Yuhai, CHI Wenfeng, DOU Yinyin, HOU Yali, YIN Zherui, CHANG Liping, YANG Jiuchun, XIE Jiali, QIU Juan, ZHANG Hansong, ZHANG Yubo, YANG Shiqi, SA Rigai, LIU Jiyuan. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015-2020 [J]. Acta Geographica Sinica, 2022, 77(5): 1056-1071. |
[5] | WANG Shaojian, WANG Jieyu. Embodied land in China's provinces from the perspective of regional trade [J]. Acta Geographica Sinica, 2022, 77(5): 1072-1085. |
[6] | JU Hongrun, ZHANG Shengrui, YAN Yichen. Spatial pattern changes of urban expansion and multi-dimensional analysis of driving forces in the Guangdong-Hong Kong-Macao Greater Bay Area in 1980-2020 [J]. Acta Geographica Sinica, 2022, 77(5): 1086-1101. |
[7] | DENG Xiangzheng, JIANG Sijian, LI Xing, ZHAO Haipeng, HAN Ze, DONG Jinwei, SUN Zhigang, CHEN Mingxing. Dynamics of regional land uses affecting spatial heterogeneity of surface CO2 concentration [J]. Acta Geographica Sinica, 2022, 77(4): 936-946. |
[8] | HOU Yali, KUANG Wenhui, DOU Yinyin. Analysis of urban expansion and fractal features in global 33 megacities from 2000-2020 [J]. Acta Geographica Sinica, 2022, 77(11): 2687-2702. |
[9] | LI Yan, LIN Anqi, WU Hao, WU Xia, CEN Luyu, LIU He, JIANG Zhimeng. Refined simulation of urban land use change with emphasis on spatial scale effect [J]. Acta Geographica Sinica, 2022, 77(11): 2738-2756. |
[10] | WULAN Tuya. Characteristics of grassland utilization in Mongolian Plateauand their differences among countries [J]. Acta Geographica Sinica, 2021, 76(7): 1722-1731. |
[11] | HAN Bo, JIN Xiaobin, SUN Rui, LI Hanbing, LIANG Xinyuan, ZHOU Yinkang. Land use sustainability evaluation based on conflict-adaptation perspective [J]. Acta Geographica Sinica, 2021, 76(7): 1763-1777. |
[12] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |
[13] | LONG Hualou, CHEN Kunqiu. Urban-rural integrated development and land use transitions: A perspective of land system science [J]. Acta Geographica Sinica, 2021, 76(2): 295-309. |
[14] | PENG Shiyao, CHEN Shaokuan, XU Qi, NIU Jiaqi. Spatial characteristics of land use based on POI and urban rail transit passenger flow [J]. Acta Geographica Sinica, 2021, 76(2): 459-470. |
[15] | LIAO Liuwen, GAO Xiaolu, LONG Hualou, TANG Lisha, CHEN Kunqiu, MA Enpu. A comparative study of farmland use morphology in plain and mountainous areas based on farmers' land use efficiency [J]. Acta Geographica Sinica, 2021, 76(2): 471-486. |