Acta Geographica Sinica ›› 2021, Vol. 76 ›› Issue (9): 2297-2311.doi: 10.11821/dlxb202109018
• Climate Change and Land Surface Process • Previous Articles Next Articles
LIU Zhilin(), DING Yinping, JIAO Yuanmei(
)
Received:
2020-08-11
Revised:
2021-04-20
Online:
2021-09-25
Published:
2021-11-25
Contact:
JIAO Yuanmei
E-mail:zhilin2015@foxmail.com;ymjiao@sina.com
Supported by:
LIU Zhilin, DING Yinping, JIAO Yuanmei. Spatiotemporal patterns of precipitation changes and their impacts on food supply in Southwest China from 1988 to 2018: A case study in Yunnan Province[J].Acta Geographica Sinica, 2021, 76(9): 2297-2311.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Barros V R, Field C B, Dokken D J, et al. Climate Change 2014: Impacts, Adaptation and Vulnerability. Cambridge: Cambridge University Press, 2014. |
[2] |
Zampieri M, Ceglar A, Dentener F, et al. When will current climate extremes affecting maize production become the norm? Earth's Future, 2019, 7(2): 113-122.
doi: 10.1029/2018EF000995 |
[3] |
Miralles D G, Gentine P, Seneviratne S I, et al. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Annals of the New York Academy of Sciences, 2019, 1436(1): 19-35.
doi: 10.1111/nyas.13912 pmid: 29943456 |
[4] |
Kahiluoto H, Kaseva J, Balek J, et al. Decline in climate resilience of European wheat. PNAS, 2019, 116(1): 123-128.
doi: 10.1073/pnas.1804387115 pmid: 30584094 |
[5] |
Pendergrass A G. What precipitation is extreme? Science, 2018, 360(6393): 1072-1073.
doi: 10.1126/science.aat1871 pmid: 29880673 |
[6] |
Ault T R. On the essentials of drought in a changing climate. Science, 2020, 368(6488): 256-260.
doi: 10.1126/science.aaz5492 |
[7] |
Hu T, van Dijk A I J M, Renzullo L J, et al. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102153. DOI: 10.1016/j.jag.2020.102153.
doi: 10.1016/j.jag.2020.102153 |
[8] |
Chen S A, Michaelides K, Grieve S W D, et al. Aridity is expressed in river topography globally. Nature, 2019, 573(7775): 573-577.
doi: 10.1038/s41586-019-1558-8 |
[9] |
Konapala G, Mishra A K, Wada Y, et al. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 2020, 11(1): 3044. DOI: 10.1038/s41467-020-16757-w.
doi: 10.1038/s41467-020-16757-w pmid: 32576822 |
[10] |
Valmassoi A, Dudhia J, Di Sabatino S, et al. Irrigation impact on precipitation during a heatwave event using WRF-ARW: The summer 2015 Po Valley case. Atmospheric Research, 2020, 241: 104951. DOI: 10.1016/j.atmosres.2020.104951.
doi: 10.1016/j.atmosres.2020.104951 |
[11] |
Blöschl G, Hall J, Viglione A, et al. Changing climate both increases and decreases European river floods. Nature, 2019, 573(7772): 108-111.
doi: 10.1038/s41586-019-1495-6 |
[12] |
Nyström M, Jouffray J B, Norström A V, et al. Anatomy and resilience of the global production ecosystem. Nature, 2019, 575(7781): 98-108.
doi: 10.1038/s41586-019-1712-3 |
[13] |
Sadri S, Pan M, de Wada Y, et al. A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sensing of Environment, 2020, 246: 111864. DOI: 10.1016/j.rse.2020.111864.
doi: 10.1016/j.rse.2020.111864 |
[14] |
Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 2013, 3(4): 369-373.
doi: 10.1038/nclimate1716 |
[15] |
Chadwick R, Boutle I, Martin G. Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. Journal of Climate, 2013, 26(11): 3803-3822.
doi: 10.1175/JCLI-D-12-00543.1 |
[16] |
Polade S D, Pierce D W, Cayan D R, et al. The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 2014, 4(1): 4364. DOI: 10.1038/srep04364.
doi: 10.1038/srep04364 |
[17] |
Kumar S, Lawrence D M, Dirmeyer P A, et al. Less reliable water availability in the 21st century climate projections. Earth's Future, 2014, 2(3): 152-160.
doi: 10.1002/2013EF000159 |
[18] |
Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2473-2493.
doi: 10.1002/jgrd.v118.6 |
[19] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 2013, 119(2): 345-357.
doi: 10.1007/s10584-013-0705-8 |
[20] | Li Qifen, Wu Zhehong, Wang Xingju, et al. The characteristics of summer precipitation in China since 1981 and its relationship with SST and pre-circulation. Plateau Meteorology, 2020, 39(1): 58-67. |
[李启芬, 吴哲红, 王兴菊, 等. 1981年以来中国夏季降水变化特征及其与SST和前期环流的联系. 高原气象, 2020, 39(1): 58-67.] | |
[21] | Zhang Zhao, Chen Baorui, Xin Xiaoping. Variations of temperature and precipittion pattern in Hulunber grassland from 1960 to 2015. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121-128. |
[张钊, 陈宝瑞, 辛晓平. 1960—2015年呼伦贝尔草原气温和降水格局变化特征. 中国农业资源与区划, 2018, 39(12): 121-128.] | |
[22] | Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China. Quaternary Sciences, 2003, 23(2): 152-164. |
[施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 2003, 23(2): 152-164.] | |
[23] |
Hulme M. Recent climatic change in the world's drylands. Geophysical Research Letters, 1996, 23(1): 61-64.
doi: 10.1029/95GL03586 |
[24] | Cao Yan, Wang Jie, Huang Ying, et al. Research on spatial and temporal variation characteristics of climate dry-wet status in Yunnan province. Water Resources and Power, 2017, 35(8): 6-9, 22. |
[曹言, 王杰, 黄英, 等. 云南省气候干湿状况时空变化特征研究. 水电能源科学, 2017, 35(8): 6-9, 22.] | |
[25] |
Gornall J, Betts R, Burke E, et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2973-2989.
doi: 10.1098/rstb.2010.0158 |
[26] |
Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 2014, 4(4): 287-291.
doi: 10.1038/nclimate2153 |
[27] |
Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298(5601): 2202-2205.
pmid: 12481139 |
[28] | Lv Guangde, Wang Chao, Jin Xuemei, et al. Effects of water-nitrogen interaction on dry matter, nitrogen accumulation and yield of winter wheat. Chinese Journal of Applied Ecology, 2020, 31(8): 2593-2603. |
[吕广德, 王超, 靳雪梅, 等. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31(8): 2593-2603.] | |
[29] | Chao Manning, Shi Xinyue, Zhang Jianlong, et al. Effects of persistent drought at grain filling stage on flag leaf photosynthesis,antioxidant enzyme activity, grain yield and quality of wheat. Journal of Triticeae Crops, 2020, 40(4): 494-502. |
[晁漫宁, 史新月, 张健龙, 等. 灌浆期持续干旱对小麦光合、抗氧化酶活性、籽粒产量和品质的影响. 麦类作物学报, 2020, 40(4): 494-502.] | |
[30] | Li Hongwei, Jiang Yanping, Jia Shuangjie, et al. Research progress on drought stress affecting ear and tassel development of maize. Journal of Maize Sciences, 2020, 28(2): 90-95. |
[李红伟, 江艳平, 贾双杰, 等. 干旱胁迫影响玉米穗发育的研究进展. 玉米科学, 2020, 28(2): 90-95.] | |
[31] | Yang Zhe, Tang Caibao, Qian Jingya, et al. Effects of exogenous 6-BA and BR on photosynthetic pigment content and antioxidant system of rice in tillering stage under drought stress. Molecular Plant Breeding, 2021, 19(8): 2733-2739. |
[杨喆, 唐才宝, 钱婧雅, 等. 外源6-BA和BR对干旱胁迫下水稻分蘖期光合色素含量及抗氧化系统的影响. 分子植物育种, 2021, 19(8): 2733-2739.] | |
[32] | Wang Fuxiang, Xiao Kaizhuang, Jiang Shenfei, et al. Mechanisms of reactive oxygen species in plants under drought stress. Chinese Science Bulletin, 2019, 64(17): 1765-1779. |
[王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17): 1765-1779.] | |
[33] | Yunnan Provincial Bureau of Statistics. Yunan Statistical Yearbook. Beijing: China Statistics Press, 2019: 122-134. |
[云南省统计局. 云南统计年鉴. 北京: 中国统计出版社, 2019: 122-134.] | |
[34] |
He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 25(7). DOI: 10.1038/s41597-020-0369-y.
doi: 10.1038/s41597-020-0369-y |
[35] |
Yang Kun, He Jie. China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center, 2019. DOI: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file.
doi: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file |
[阳坤, 何杰. 中国区域高时空分辨率地面气象要素驱动数据集(1979—2018). 国家青藏高原科学数据中心, 2019. DOI: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file.]
doi: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file |
|
[36] | Zhao Wenliang, He Zhen, He Junping, et al. Remote sensing estimation for winter wheat yield in Henan based on the MODIS-NDVI data. Geographical Research, 2012, 31(12): 2310-2320. |
[赵文亮, 贺振, 贺俊平, 等. 基于MODIS-NDVI的河南省冬小麦产量遥感估测. 地理研究, 2012, 31(12): 2310-2320.] | |
[37] |
Peng J, Hu X, Wang X, et al. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosystem Services, 2019, 39: 1-9. DOI: 10.1016/j.ecoser.2019.100998.
doi: 10.1016/j.ecoser.2019.100998 |
[38] |
Wu Wenhuan, Peng Jian, Liu Yanxu, et al. Tradeoffs and synergies between ecosystem services in Ordos City. Progress in Geography, 2017, 36(12): 1571-1581.
doi: 10.18306/dlkxjz.2017.12.012 |
[武文欢, 彭建, 刘焱序, 等. 鄂尔多斯市生态系统服务权衡与协同分析. 地理科学进展, 2017, 36(12): 1571-1581.] | |
[39] | Ru Xiaoya, Li Guang, Chen Guopeng, et al. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years. Acta Agronomica Sinica, 2019, 45(11): 1725-1734. |
[茹晓雅, 李广, 陈国鹏, 等. 不同降水年型下水氮调控对小麦产量及生物量的影响. 作物学报, 2019, 45(11): 1725-1734.] | |
[40] | Han Fangyu, Zhang Junbiao, Cheng Linlin, et al. Impact of climate change on rice yield and its regional heterogeneity in China. Journal of Ecology and Rural Environment, 2019, 35(3): 283-289. |
[韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响. 生态与农村环境学报, 2019, 35(3): 283-289.] | |
[41] | Ji Jinghua, Huo Zhiguo, Tang Lisheng, et al. Waterlogging effects on the morphological, physiological characteristics and yield of fresh eating maize. Journal of Maize Sciences, 2016, 24(3): 85-91. |
[姬静华, 霍治国, 唐力生, 等. 鲜食玉米形态特征、生理特性及产量对淹水的响应. 玉米科学, 2016, 24(3): 85-91.] | |
[42] | Li Caixia, Zhou Xinguo, Wang Hezhou, et al. Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage. Journal of Triticeae Crops, 2013, 33(6): 1232-1236. |
[李彩霞, 周新国, 王和州, 等. 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响. 麦类作物学报, 2013, 33(6): 1232-1236.] | |
[43] | Zhu Haixia, Jiang Lixia, Lv Jiajia, et al. Effect of waterlogging stress on yield components for rice of frigid region. Journal of Natural Disasters, 2019, 28(5): 198-206. |
[朱海霞, 姜丽霞, 吕佳佳, 等. 淹水胁迫对寒地水稻产量构成因子的作用. 自然灾害学报, 2019, 28(5): 198-206.] | |
[44] | Wang Ji, Li Fenghai, Lv Xiangling, et al. Physiological response of waxy corn near-isogenic lines to waterlogging. Journal of Maize Sciences, 2018, 26(5): 65-70. |
[王吉, 李凤海, 吕香玲, 等. 淹水对糯玉米耐涝性差异近等基因系生理指标的影响. 玉米科学, 2018, 26(5): 65-70.] | |
[45] | Zhang Jinyan, Li Xiaoquan, Zhang Tan. The characteristics of weather yield for global crop and its relationship with precipitation. Quarterly Journal of Applied Meteorology, 1999, 10(3): 327-332. |
[张金艳, 李小泉, 张镡. 全球粮食气象产量及其与降水量变化的关系. 应用气象学报, 1999, 10(3): 327-332.] | |
[46] |
Qi Wei, Zhang Jiwang, Wang Kongjun, et al. Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chinese Journal of Applied Ecology, 2010, 21(1): 48-52.
pmid: 20387422 |
[齐伟, 张吉旺, 王空军, 等. 干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响. 应用生态学报, 2010, 21(1): 48-52.]
pmid: 20387422 |
|
[47] |
Fang Chuanglin, Liu Haimeng, Luo Kui, et al. Comprehensive regionalization of human geography in China. Acta Geographica Sinica, 2017, 72(2): 179-196.
doi: 10.11821/dlxb201702001 |
[方创琳, 刘海猛, 罗奎, 等. 中国人文地理综合区划. 地理学报, 2017, 72(2): 179-196.] | |
[48] |
Shen Yuancun, Wang Xiuhong, Cheng Weiming, et al. Integrated physical regionalization of stony deserts in China. Progress in Geography, 2016, 35(1): 57-66.
doi: 10.18306/dlkxjz.2016.01.007 |
[申元村, 王秀红, 程维明, 等. 中国戈壁综合自然区划研究. 地理科学进展, 2016, 35(1): 57-66.] | |
[49] | Zheng Du, Ge Quansheng, Zhang Xueqin, et al. Regionalization in China: Retrospect and prospect. Geographical Research, 2005, 24(3): 330-344. |
[郑度, 葛全胜, 张雪芹, 等. 中国区划工作的回顾与展望. 地理研究, 2005, 24(3): 330-344.] |
[1] | DING Rui, SHI Wenjiao. Quantitative evaluation of the effects of climate change on cereal yields of Tibet during 1993-2017 [J]. Acta Geographica Sinica, 2021, 76(9): 2174-2186. |
[2] | XU Zhiwei, LU Huayu. Aeolian environmental change studies in the Mu Us Sandy Land, north-central China: Theory and recent progress [J]. Acta Geographica Sinica, 2021, 76(9): 2203-2223. |
[3] | CAI Xingran, LI Zhongqin, ZHANG Hui, XU Chunhai. Vulnerability of glacier change in Chinese Tianshan Mountains [J]. Acta Geographica Sinica, 2021, 76(9): 2253-2268. |
[4] | BAO Kunshan, YANG Ting, XIAO Xiang, JIA Lin, WANG Guoping, SHEN Ji. Atmospheric dust deposition history over the past 150 a recorded by mountain peatlands in northeast China [J]. Acta Geographica Sinica, 2021, 76(9): 2283-2296. |
[5] | DENG Chuxiong, ZHAO Hao, XIE Binggeng, LI Zhongwu, LI Ke. The impacts of land misallocation on urban industrial green total-factor productivity in China [J]. Acta Geographica Sinica, 2021, 76(8): 1865-1881. |
[6] | CHEN Mingxing, XIAN Yue, WANG Pengling, DING Zijin. Climate change and multi-dimensional sustainable urbanization [J]. Acta Geographica Sinica, 2021, 76(8): 1895-1909. |
[7] | YIN Yunhe, MA Danyang, DENG Haoyu, WU Shaohong. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China [J]. Acta Geographica Sinica, 2021, 76(7): 1605-1617. |
[8] | HE Jin, LIU Yan, TIAN Yanguo, WANG Ze, XIAO Xin, JIANG Feng, LIU Tao, SUN Qianli, CHEN Jing, LI Maotian, CHEN Zhongyuan. Mid-Late Holocene climate change and its impact on the agriculture-pastoralism evolution in the West Liaohe Basin [J]. Acta Geographica Sinica, 2021, 76(7): 1618-1633. |
[9] | LI Cheng, ZHUANG Dafang, HE Jianfeng, WEN Kege. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia [J]. Acta Geographica Sinica, 2021, 76(7): 1634-1648. |
[10] | GAO Jixi, LIU Xiaoman, WANG Chao, WANG Yong, FU Zhuo, HOU Peng, LYU Na. Evaluating changes in ecological land and effect of protecting important ecological spaces in China [J]. Acta Geographica Sinica, 2021, 76(7): 1708-1721. |
[11] | FANG Xiuqi, HE Fanneng, WU Zhilei, ZHENG Jingyun. General characteristics of the agricultural area and fractional cropland cover changes in China for the past 2000 years [J]. Acta Geographica Sinica, 2021, 76(7): 1732-1746. |
[12] | WANG Tao, LIU Chengliang, DU Debin. Spatio-temporal dynamics of international freshwater conflict events and relations from 1948 to 2018 [J]. Acta Geographica Sinica, 2021, 76(7): 1792-1809. |
[13] | WANG Keyi, LIU Xiaohong, ZENG Xiaomin, XU Guobao, ZHANG Lingnan, LI Chunyue. Stable nitrogen isotope in tree rings: Progresses, problems and prospects [J]. Acta Geographica Sinica, 2021, 76(5): 1193-1205. |
[14] | MA Zuopeng, LI Chenggu, ZHANG Pingyu. Characteristics, mechanism and response of urban shrinkage in the three provinces of Northeast China [J]. Acta Geographica Sinica, 2021, 76(4): 767-780. |
[15] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |