Acta Geographica Sinica ›› 2021, Vol. 76 ›› Issue (1): 167-177.doi: 10.11821/dlxb202101013
• Ecosystem Services • Previous Articles Next Articles
CUI Yaoping1,2(), LI Nan1,2, FU Yiming2, CHEN Liangyu2
Received:
2019-04-02
Revised:
2020-10-07
Online:
2021-01-25
Published:
2021-03-25
Supported by:
CUI Yaoping, LI Nan, FU Yiming, CHEN Liangyu. Contribution of terrestrial carbon sink to future warming in China, the United States, Russia and Canada[J].Acta Geographica Sinica, 2021, 76(1): 167-177.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013. |
[2] | National Oceanic and Atmospheric Administration Earth System Research Laboratory. NOAA's Annual Greenhouse Gas Index. http://www.esrl.noaa.gov/gmd/aggi/. |
[3] | Eby M, Weaver A J, Alexander K, et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013,9(3):1111-1140. |
[4] | Clark P U, Shakun J D, Marcott S A, et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 2016,6(4):360-369. |
[5] | Fang Jingyun, et al. Carbon Emissions from China and the World: Some Views on Relationship between Carbon Emissions and Socio-economic Development. Beijing: Science Press, 2018. |
[ 方精云, 等. 中国及全球碳排放—兼论碳排放与社会发展的关系. 北京: 科学出版社. 2018.] | |
[6] | Quéré C L, Moriarty R, Andrew R M, et al. Global Carbon Budget 2015. Earth System Science Data, 2015,7(2):349-396. |
[7] |
Martin H, Markus R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008,451(7176):289-292.
pmid: 18202646 |
[8] | Pachauri R K, Reisinger A. Climate Change 2007: Synthesis Report. Geneva: IPCC, 2007. |
[9] | Tang X Y, Cui Y P, Li N, et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sensing, 2020,12(5):837. DOI: 10.3390/rs12050837. |
[10] | Kirschbaum M U, Saggar S, Tate K R, et al. Quantifying the climate-change consequences of shifting land use between forest and agriculture. Science of the Total Environment, 2013,465(6):314-324. |
[11] |
Anderson-Teixeira K J, Snyder P K, Twine T E, et al. Climate-regulation services of natural and agricultural ecoregions of the American. Nature Climate Change, 2012,2(3):177-181.
doi: 10.1038/nclimate1346 |
[12] | Archer D, Eby M, Brovkin V, et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth & Planetary Sciences, 2009,37(1):117-134. |
[13] | Landry J S, Matthews H D. Non-deforestation fire vs. fossil fuel combustion: The source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences, 2016,13(7):2137-2149. |
[14] | Joos F, Roth R, Fuglestvedt J S, et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 2013,13(5):2793-2825. |
[15] |
Feldman D R, Collins W D, Gero P J, et al. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 2015,519(7543):339-343.
pmid: 25731165 |
[16] | Boden T A, Marland G, Andres R G. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2017. DOI: 10.3334/CDIAC/00001_V2017. |
[17] | Jideofor A. China's efforts in sustainable development: A test case for nigeria's environmental sustainability goal. Modern Economy, 2017,8(5):770-790. |
[18] | Gregg J S, Andres R J, Marland G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters, 2008,35(8):135-157. |
[19] | Rüstemğlu H, Andrés A R. Determinants of CO2 emissions in Brazil and Russia between 1992 and 2011: A decomposition analysis. Environmental Science & Policy, 2016,58:95-106. |
[20] | World Bank. Global Economic Propects, June 2018: The Turning of the Tide? Washington D C: World bank, 2018. |
[21] | World Bank. World Development Indicators. https://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GDP.MKTP.KD.ZG&country=#, 2017-01. |
[22] | Myhre G, Highwood E J, Shine K P, et al. New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 1998,25(14):2715-2718. |
[23] | Li Nan. Changes of major greenhouse gases in China and their contributions to global radiative forcing[D]. Kaifeng: Henan University, 2020. |
[ 李楠. 中国主要温室气体变化及其对全球辐射强迫的贡献研究[D]. 开封: 河南大学, 2020.] | |
[24] |
Lee D S, Pitari G, Grewe V, et al. Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 2010,44(37):4678-4734.
doi: 10.1016/j.atmosenv.2009.06.005 pmid: 32288556 |
[25] | IPCC. Climate Change 2007: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2007. |
[26] | Sausen R, Schumann U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios. Climatic Change, 2000,44(1/2):27-58. |
[27] | Tian H Q, Xu X F, Lu C Q, et al. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011,116(G02011). DOI: 10.1029/2010JG001393. |
[28] | Xu X F, Tian H Q, Zhang C, et al. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences, 2010,7(11):3637-3655. |
[29] | Mendoza V M, Garduno R, Villanueva E E, Mendoza Blanca, Mexico's contribution to global radiative forcing by major anthropogenic greenhouse gases: CO2, CH4, and N2O. Atmosfera, 2015,28(3):219-227. |
[30] | Montenegro A, Eby M, Mu Q, et al. The net carbon drawdown of small scale afforestation from satellite observations. Global & Planetary Change, 2009,69(4):195-204. |
[31] |
Schwaab J, Bavay M, Davin E, et al. Carbon storage versus albedo change: Radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosciences, 2015,12(2):467-487.
doi: 10.5194/bg-12-467-2015 |
[32] |
Feddema J J, Oleson K W, Bonan G B, et al. The importance of land-cover change in simulating future climates. Science, 2005,310(5754):1674-1678.
doi: 10.1126/science.1118160 pmid: 16339443 |
[33] |
Davin E L, de Noblet-ducoudré N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 2010,23(1):97-112.
doi: 10.1175/2009JCLI3102.1 |
[34] | Kondo Y, Matsui H, Moteki N, et al. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011,116(D08204). DOI: 10.1029/2010JG001393. |
[35] | Clarke D W, Boyle J F, Plater A J. Particle-size evidence of barrier estuary regime as a new proxy for ENSO climate variability. Earth Surface Processes and Landforms, 2017,42(10):1520-1534. |
[36] |
Roe G H, Baker M B. Why is climate sensitivity so unpredictable? Science, 2007,318(5850):629-632.
doi: 10.1126/science.1144735 pmid: 17962560 |
[37] | Rohling E J, Marino G, Foster G L, et al. Comparing climate sensitivity, past and present. Annual Review of Marine Science, 2018,10(1):261-288. |
[38] | Loehle C. A minimal model for estimating climate sensitivity. Ecological Modelling, 2014,276:80-84. |
[39] |
Li N, Cui Y P, Fu Y M, et al. Contribution of anthropogenic CO2 in China to global radiative forcing and its offset by the ecosystem during 2000-2015. Annals of the New York Academy of Sciences, DOI: 10.1111/nyas.14505.
doi: 10.1111/nyas.14546 pmid: 33340110 |
[40] | Cui Y P, Meadows M E, Li N, et al. Land cover change intensifies actual and potential radiative forcing through CO2 in south and southeast Asia from 1992 to 2015. International Journal of Environmental Research and Public Health, 2019,16(14):2460-2472. |
[41] | Houghton R A, House J I, Pongratz J, et al. Carbon emissions from land use and land-cover change. Biogeosciences, 2012,9(12):5125-5142. |
[42] |
Loboda T V, Chen D. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology, 2017,23(1):138-153.
doi: 10.1111/gcb.13349 pmid: 27167728 |
[43] | Cao Mingkui, Li Kerang. perspective on terrestrial ecosystem-climate interaction. Advance in Earth Sciences, 2000,15(4):446-452. |
[ 曹明奎, 李克让. 陆地生态系统与气候相互作用的研究进展. 地球科学进展, 2000,15(4):446-452.] | |
[44] | Fang Jingyun, Zhu Jiangling, Shi Yue. The responses of ecosystems to global warming. Chinese Science Bulletin, 2018,63(2):136-140. |
[ 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应. 科学通报, 2018,63(2):136-140.] | |
[45] |
Cui Y P, Xiao X M, Zhang Y, et al. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 2017,7(1):14963. DOI: 10.1038/s41598-017-13783-5.
doi: 10.1038/s41598-017-13783-5 pmid: 29097731 |
[46] | Dass P, Rawlins M A, Kimball J S, et al. Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia. Biogeosciences, 2016,13(1):45-62. |
[47] |
Zhang Y, Xiao X M, Wu X C, et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 2017,4:170165. DOI: 10.1038/sdata.2017.165.
pmid: 29064464 |
[48] |
Lim C, Kafatos M, Megonigal P. Correlation between atmospheric CO2 concentration and vegetation greenness in North America: CO2 fertilization effect. Climate Research, 2004,28(1):11-22.
doi: 10.3354/cr028011 |
[49] | Lovenduski N S, Gruber N, Doney S C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Climate Research, Global Biogeochemical Cycles, 2008,22(3):GB3016. DOI: 10.1029/2007GB003139. |
[50] | Landschützer P, Gruber N, Bakker D C E, et al. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 2014,28(9):927-949. |
[1] | XU Li, YU Guirui, HE Nianpeng. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s [J]. Acta Geographica Sinica, 2018, 73(11): 2150-2167. |
[2] | ZHAI Jun, LIU Ronggao, LIU Jiyuan, ZHAO Guosong. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010 [J]. Acta Geographica Sinica, 2013, 68(7): 875-885. |
[3] | ZHANG Zhiqiang, QU Jiansheng, ZENG Jingjing. A Quantitative Comparison and Analytical Study on the Assessment Indicator s of Greenhouse Gases Emissions [J]. Acta Geographica Sinica, 2008, 63(7): 693-702. |
[4] | GENG Yuan bo, ZHANG Shen, DONG Yun she, MENG Wei qi, QI Yu chun, CHEN Zuo zhong, WANG Yan fen. The Content of Soil Organic Carbon and Total Nitrogen and Correl Ativity between Their Content and Fluxes of CO22O and CH4 in Xilin River Basin Steppe [J]. Acta Geographica Sinica, 2001, 56(1): 44-53. |