Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (5): 961-974.doi: 10.11821/dlxb202005006
• Land Cover Change and Ecosystem Services • Previous Articles Next Articles
JIN Kai1,2, WANG Fei1,3,4(), HAN Jianqiao1,3, SHI Shangyu3,5, DING Wenbin1
Received:
2019-09-18
Revised:
2020-03-03
Online:
2020-05-25
Published:
2020-07-25
Contact:
WANG Fei
E-mail:wafe@ms.iswc.ac.cn
Supported by:
JIN Kai, WANG Fei, HAN Jianqiao, SHI Shangyu, DING Wenbin. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J].Acta Geographica Sinica, 2020, 75(5): 961-974.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Average trends of growing season NDVI and the impacts of drivers of NDVI change during 1982-2015 in the 32 provincial-level administrative regions of China (10-3 a-1)
地区 | slope (NDVIobs)a | 对植被恢复的作用 | 驱动力 | 地区 | slope(NDVIobs)a | 对植被恢复的作用 | 驱动力 | |||
---|---|---|---|---|---|---|---|---|---|---|
CCb | HAc | CCb | HAc | |||||||
上海 | -0.33 | 基本无影响 | 轻微抑制 | CC & HA | 海南 | 1.18 | 轻微促进 | 轻微促进 | CC & HA | |
西藏 | 0.04 | 基本无影响 | 基本无影响 | CC | 甘肃 | 1.39 | 轻微促进 | 轻微促进 | CC & HA | |
吉林 | 0.26 | 基本无影响 | 基本无影响 | CC & HA | 河南 | 1.41 | 轻微促进 | 轻微促进 | CC & HA | |
黑龙江 | 0.44 | 基本无影响 | 轻微促进 | CC & HA | 湖北 | 1.42 | 轻微促进 | 轻微促进 | CC & HA | |
青海 | 0.47 | 轻微促进 | 基本无影响 | CC & HA | 湖南 | 1.43 | 轻微促进 | 轻微促进 | CC & HA | |
四川 | 0.51 | 轻微促进 | 基本无影响 | CC & HA | 江西 | 1.46 | 轻微促进 | 轻微促进 | CC & HA | |
内蒙古 | 0.55 | 基本无影响 | 轻微促进 | CC & HA | 贵州 | 1.54 | 轻微促进 | 中度促进 | CC & HA | |
云南 | 0.64 | 基本无影响 | 轻微促进 | CC & HA | 宁夏 | 1.55 | 轻微促进 | 轻微促进 | CC & HA | |
浙江 | 0.68 | 轻微促进 | 基本无影响 | CC & HA | 安徽 | 1.58 | 轻微促进 | 轻微促进 | CC & HA | |
新疆 | 0.7 | 轻微促进 | 轻微促进 | CC & HA | 广西 | 1.62 | 轻微促进 | 中度促进 | CC & HA | |
台湾 | 0.83 | 轻微促进 | 轻微促进 | CC & HA | 北京 | 1.7 | 轻微促进 | 中度促进 | CC & HA | |
天津 | 0.85 | 轻微促进 | 轻微促进 | CC & HA | 山东 | 1.74 | 轻微促进 | 中度促进 | CC & HA | |
广东 | 0.9 | 基本无影响 | 轻微促进 | CC & HA | 河北 | 1.78 | 轻微促进 | 中度促进 | CC & HA | |
福建 | 0.91 | 轻微促进 | 轻微促进 | CC & HA | 重庆 | 2.16 | 中度促进 | 中度促进 | CC & HA | |
江苏 | 1 | 轻微促进 | 轻微促进 | CC & HA | 陕西 | 2.24 | 轻微促进 | 中度促进 | CC & HA | |
辽宁 | 1.1 | 基本无影响 | 轻微促进 | CC & HA | 山西 | 2.71 | 轻微促进 | 中度促进 | CC & HA |
[1] | IPCC. Summary for policymakers//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013. |
[2] |
Sun Hongyu, Wang Changyao, Niu Zheng , et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data. Journal of Remote Sensing, 1998,2(3):204-210.
doi: 10.11834/jrs.19980309 |
[ 孙红雨, 王长耀, 牛铮 , 等. 中国地表植被覆盖变化及其与气候因子关系: 基于NOAA时间序列数据分析. 遥感学报, 1998,2(3):204-210.]
doi: 10.11834/jrs.19980309 |
|
[3] | Fang J Y, Song Y C, Liu H Y , et al. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica, 2002,44(9):1105-1122. |
[4] |
Piao S, Friedlingstein P, Ciais P , et al. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 2006,33:L23402. Doi: 10.1029/2006GL028205.
doi: 10.1029/2006GL028205 |
[5] |
Kong D, Zhang Q, Singh V P , et al. Seasonal vegetation response to climate change in the Northern Hemisphere (1982-2013). Global and Planetary Change, 2017,148:1-8.
doi: 10.1016/j.gloplacha.2016.10.020 |
[6] |
Liu Y, Li Y, Li S , et al. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sensing, 2015,7(10):13233-13250.
doi: 10.3390/rs71013233 |
[7] | Yang Xuemei, Yang Taibao, Liu Haimeng , et al. Vegetation variation in the North Hemisphere under climate warming in the last 30 years. Arid Zone Research, 2016,33(2):379-391. |
[ 杨雪梅, 杨太保, 刘海猛 , 等. 气候变暖背景下近30a北半球植被变化研究综述. 干旱区研究, 2016,33(2):379-391.] | |
[8] |
Zhou L, Tucker C J, Kaufmann R K , et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 2001,106(D17):20069-20083.
doi: 10.1029/2000JD000115 |
[9] |
Sun W, Song X, Mu X , et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology, 2015, 209- 210(1):87-99.
doi: 10.1016/j.agrformet.2015.05.002 |
[10] |
Dana E D, Vivas S, Mota J F . Urban vegetation of Almería City: A contribution to urban ecology in Spain. Landscape and Urban Planning, 2002,59:203-216.
doi: 10.1016/S0169-2046(02)00039-7 |
[11] |
Jin K, Wang F, Li P . Responses of vegetation cover to environmental change in large cities of China. Sustainability, 2018,10(1):270. Doi: 10.3390/su10010270.
doi: 10.3390/su10010270 |
[12] |
Zhao A, Zhang A, Liu X , et al. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theoretical and Applied Climatology, 2018,132:555-567.
doi: 10.1007/s00704-017-2107-8 |
[13] |
Myneni R B, Hall F G, Sellers P J , et al. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):481-486.
doi: 10.1109/TGRS.36 |
[14] |
Lucht W, Prentice I C, Myneni R B , et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 2002,296(31):1687-1689.
doi: 10.1126/science.1071828 |
[15] |
Wang J, Meng J J, Cai Y L . Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environmental Geology, 2008,54(6):1185-1195.
doi: 10.1007/s00254-007-0901-9 |
[16] |
Zhang Y, Zhu Z, Liu Z , et al. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016,224:1-10.
doi: 10.1016/j.agrformet.2016.04.009 |
[17] |
Tucker C, Pinzόn J, Brown M , et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 2005,26:4485-4498.
doi: 10.1080/01431160500168686 |
[18] | Cheng Fangyan, Liu Shiliang, Yi Yijie , et al. The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI. Acta Ecologica Sinica, 2017,37(3):788-797. |
[ 成方妍, 刘世梁, 尹艺洁 , 等. 基于MODIS NDVI的广西沿海植被动态及其主要驱动因素. 生态学报, 2017,37(3):788-797.] | |
[19] |
Fensholt R, Proud S R . Evaluation of earth observation based global long term vegetation trends: Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 2012,119(16):131-147.
doi: 10.1016/j.rse.2011.12.015 |
[20] |
Munyati C, Mboweni G . Variation in NDVI values with change in spatial resolution for semi-arid savanna vegetation: A case study in northwestern South Africa. International Journal of Remote Sensing, 2013,34(7):2253-2267.
doi: 10.1080/01431161.2012.743692 |
[21] |
Jin K, Wang F, Yu Q , et al. Varied degrees of urbanization effects on observed surface air temperature trends in China. Climate Research, 2018,76(2):131-143.
doi: 10.3354/cr01531 |
[22] |
Piao S, Ciais P, Huang Y , et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010,467:43-51.
doi: 10.1038/nature09364 |
[23] |
Pang G, Wang X, Yang M . Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 2017,444(2017):87-96.
doi: 10.1016/j.quaint.2016.08.038 |
[24] |
Zhang Chunsen, Hu Yan, Shi Xiaoliang . Analysis of spatial-temporal evolution of vegetation cover in Loess Plateau in recent 33 years based on AVHRR NDVI and MODIS NDVI. Journal of Applied Sciences, 2016,34(6):702-712.
doi: 10.3969/j.issn.0255-8297.2016.06.006 |
[ 张春森, 胡艳, 史晓亮 . 基于AVHRR和MODIS NDVI数据的黄土高原植被覆盖时空演变分析. 应用科学学报, 2016,34(6):702-712.]
doi: 10.3969/j.issn.0255-8297.2016.06.006 |
|
[25] |
Mao D, Wang Z, Luo L , et al. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observations and Geoinformation, 2012,18:528-536.
doi: 10.1016/j.jag.2011.10.007 |
[26] | Zhang Yuecong, Zhao Zhiqiang, Li Shuangcheng , et al. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China. Geographical Research, 2008,27(4):745-754. |
[ 张月丛, 赵志强, 李双成 , 等. 基于SPOT NDVI的华北北部地表植被覆盖变化趋势. 地理研究, 2008,27(4):745-754.] | |
[27] |
Piao S, Yin G, Tan J , et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 2015,21(4):1601-1609.
doi: 10.1111/gcb.12795 |
[28] | Deng Chenhui, Bai Hongying, Gao Shan , et al. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 2018,33(3):425-438. |
[ 邓晨晖, 白红英, 高山 , 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 2018,33(3):425-438.] | |
[29] |
Zheng Jingyun, Bian Juanjuan, Ge Quansheng , et al. The climate regionalization in China for 1981-2010. Chinese Science Bulletin, 2013,58(30):3088-3099.
doi: 10.1007/s11434-013-5948-2 |
[ 郑景云, 卞娟娟, 葛全胜 , 等. 1981—2010年中国气候区划. 科学通报, 2013,58(30):3088-3099.]
doi: 10.1007/s11434-013-5948-2 |
|
[30] |
Zhu Z C, Bi J, Pan Y Z , et al. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photo synthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 2013,5(2):927-948.
doi: 10.3390/rs5020927 |
[31] |
Anyamba A, Small J, Tucker C , et al. Thirty-two years of Sahelian zone growing season non-stationary NDVI3g patterns and trends. Remote Sensing, 2014,6(4):3101-3122.
doi: 10.3390/rs6043101 |
[32] | Du Jiaqiang, Shu Jianmin, Zhao Chenxi , et al. Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982-2006. Acta Ecologica Sinica, 2016,36(21):6738-6749. |
[ 杜加强, 舒俭民, 赵晨曦 , 等. 两代AVHRR GIMMS NDVI 数据集的对比分析: 以新疆地区为例. 生态学报, 2016,36(21):6738-6749.] | |
[33] | Jin Kai . Spatio-temporal variations of vegetation cover and its relationships between climate change and human activities over China[D]. Yangling: Northwest A&F University, 2019. |
[ 金凯 . 中国植被覆盖时空变化及其与气候和人类活动的关系[D]. 杨凌: 西北农林科技大学, 2019.] | |
[34] |
Wang F, Ge Q S . A new estimation of urbanization's contribution to the warming trend in China. Journal of Climate, 2015,28:8923-8938.
doi: 10.1175/JCLI-D-14-00427.1 |
[35] | Song Fuqiang, Kang Muyi, Yang Peng , et al. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China. Journal of Beijing Forestry University, 2010,32(4):72-80. |
[ 宋富强, 康慕谊, 杨朋 , 等. 陕北地区GIMMS、SPOT-VGT和MODIS归一化植被指数的差异分析. 北京林业大学学报, 2010,32(4):72-80.] | |
[36] | Fang Jingyun, Piao Shilong, He Jinsheng , et al. Vegetation of China invigorated in last 20 years. Science in China: Series C, 2003,33(6):554-565. |
[ 方精云, 朴世龙, 贺金生 , 等. 近20年来中国植被活动在增强. 中国科学(C辑), 2003,33(6):554-565.] | |
[37] |
Zhao Jie, Du Ziqiang, Wu Zhitao , et al. Seasonal variations of day and nighttime warming and their effects on vegetation dynamics in China's temperate zone. Acta Geographica Sinica, 2018,73(3):395-404.
doi: 10.11821/dlxb201803001 |
[ 赵杰, 杜自强, 武志涛 , 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 2018,73(3):395-404.]
doi: 10.11821/dlxb201803001 |
|
[38] |
Evans J, Geerken R . Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 2004,57(4):535-554.
doi: 10.1016/S0140-1963(03)00121-6 |
[39] |
Wessels K J, Prince S D, Malherbe J , et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 2007,68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015 |
[40] |
Li Jing, Liu Hongbing, Li Caiyun , et al. Changes of green-up day of vegetation growing season based on GIMMS 3g NDVI in northern China in recent 30 years. Scientia Geographica Sinica, 2017,37(4):620-629.
doi: 10.13249/j.cnki.sgs.2017.04.016 |
[ 李净, 刘红兵, 李彩云 , 等. 基于GIMMS 3g NDVI 的近30年中国北部植被生长季始期变化研究. 地理科学, 2017,37(4):620-629.]
doi: 10.13249/j.cnki.sgs.2017.04.016 |
|
[41] | Xin Z B, Xu J X, Zheng W . Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities. Science in China Series D: Earth Sciences, 2008,51(1):67-78. |
[42] | An Youzhi . Vegetation NDVI and phenology change in Northern China based on remote sensing[D]. Shanghai: East China Normal University, 2014. |
[ 安佑志 . 基于遥感的中国北部植被NDVI和物候变化研究[D]. 上海: 华东师范大学, 2014.] | |
[43] | Xie Baoni . Vegetation dynamics and climate change on the Loess Plateau, China: 1982-2014[D]. Yangling: Northwest A&F University, 2016. |
[ 谢宝妮 . 黄土高原近30年植被覆盖变化及其对气候变化的响应[D]. 杨凌: 西北农林科技大学, 2016.] | |
[44] | Zhang Qian . Contributions of climate change and human activities to vegetation dynamics of Loess Plateau[D]. Lanzhou: Lanzhou Jiaotong University, 2014. |
[ 张倩 . 气候和人类因素在黄土高原植被覆盖变化中的贡献率研究[D]. 兰州: 兰州交通大学, 2014.] | |
[45] |
Luo L H, Ma W, Zhuang Y L , et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 2018,93:24-35.
doi: 10.1016/j.ecolind.2018.04.067 |
[46] | Zhang Baoqing, Wu Pute, Zhao Xining . Detecting and analysis of spatial and temporal variation of vegetation cover in the Loess Plateau during 1982-2009. Transactions of the CSAE, 2011,27(4):287-293. |
[ 张宝庆, 吴普特, 赵西宁 . 近30a黄土高原植被覆盖时空演变监测与分析. 农业工程学报, 2011,27(4):287-293.] | |
[47] | Tian Haijing . Assessment of non-climate triggered vegetation trends in China from time series of remotely sensed data: A case study of government-dominated forest construction [D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2017. |
[ 田海静 . 非气候因素引起的中国植被变化遥感诊断: 以林业工程为例[D]. 北京: 中国科学院遥感与数字地球研究所, 2017.] | |
[48] |
Liu X, Zhu X, Pan Y , et al. Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. Journal of Geographical Sciences, 2016,26(1):45-58.
doi: 10.1007/s11442-016-1253-8 |