Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (5): 931-948.doi: 10.11821/dlxb202005004
• Land Cover Change and Ecosystem Services • Previous Articles Next Articles
ZHANG Yili1,2,3, WU Xue1,3, ZHENG Du1
Received:
2018-10-10
Revised:
2020-01-07
Online:
2020-05-25
Published:
2020-07-25
Supported by:
ZHANG Yili, WU Xue, ZHENG Du. Vertical variation of land cover in the Central Himalayas[J].Acta Geographica Sinica, 2020, 75(5): 931-948.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Elevation range and composition of land cover types on north and south slopes based on three division methods
南北坡划分 | 高程范围(m) | 类型组成 | 无分布的主要类型 | ||||||
---|---|---|---|---|---|---|---|---|---|
南坡 | 北坡 | 南坡 | 北坡 | 南坡 | 北坡 | ||||
脊线法 | 96~8844 | 2100~8844 | 一级类型10个 二级类型21个 | 一级类型10个 二级类型20个 | 常绿阔叶林 | ||||
样带法 | 珠峰样带 | 146~8844 | 4167~8844 | 一级类型9个 二级类型20个 | 一级类型7个 二级类型10个 | 建设用地 | 森林、灌丛和建设用地 | ||
马卡鲁峰样带 | 115~8463 | 3962~8460 | 一级类型10个 二级类型21个 | 一级类型9个 二级类型13个 | 湖泊 | 森林 | |||
卓奥友峰样带 | 228~8200 | 3962~8200 | 一级类型9个 二级类型20个 | 一级类型7个 二级类型10个 | 建设用地 | 森林、灌丛和建设用地 | |||
扇区法 | 96~8844 | 4000~8844 | 一级类型10个 二级类型21个 | 一级类型8个 二级类型11个 | 森林、灌丛 |
Tab. 2
Composition of area of land cover types on north and south slopes
类型 | 划分方法 | 南坡 | 北坡 | 南北面积比 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积(km2) | 百分比(%) | 面积(km2) | 百分比(%) | 南:北 | |||||||||||||
农田 | 扇区法 | 374.20 | 44.94 | 5.66 | 1.05 | 66.11:1 | |||||||||||
样带法—MM样带 | 304.75 | 27.24 | 23.35 | 2.08 | 13.05:1 | ||||||||||||
样带法—MQ样带 | 240.29 | 19.52 | 8.21 | 0.87 | 29.27:1 | ||||||||||||
样带法—MC样带 | 406.96 | 31.88 | 9.04 | 1.02 | 45.02:1 | ||||||||||||
脊线法* | 7917.95 | 26.91 | 243.64 | 0.99 | 32.50:1 | ||||||||||||
森林 | 扇区法 | 342.38 | 41.12 | - | - | - | |||||||||||
样带法—MM样带 | 516.34 | 46.16 | - | - | - | ||||||||||||
样带法—MQ样带 | 559.99 | 45.50 | - | - | - | ||||||||||||
样带法—MC样带 | 406.80 | 31.87 | - | - | - | ||||||||||||
脊线法 | 11177 | 37.99 | 262.54 | 1.08 | 42.60:1 | ||||||||||||
灌丛 | 扇区法 | 13.62 | 1.64 | - | - | - | |||||||||||
样带法—MM样带 | 38.65 | 3.45 | 10.41 | 0.93 | 3.71:1 | ||||||||||||
样带法—MQ样带 | 34.85 | 2.83 | - | - | - | ||||||||||||
样带法—MC样带 | 36.13 | 2.83 | - | - | - | ||||||||||||
脊线法 | 1433.42 | 4.87 | 660.56 | 2.69 | 2.17:1 | ||||||||||||
草地 | 扇区法 | 22.17 | 2.66 | 340.08 | 62.99 | 0.07:1 | |||||||||||
样带法—MM样带 | 41.97 | 3.75 | 553.23 | 49.38 | 0.08:1 | ||||||||||||
样带法—MQ样带 | 43.26 | 3.51 | 522.06 | 55.10 | 0.08:1 | ||||||||||||
样带法—MC样带 | 106.15 | 8.31 | 450.42 | 50.94 | 0.24:1 | ||||||||||||
脊线法 | 2041.39 | 6.94 | 11886.72 | 48.40 | 0.17:1 | ||||||||||||
稀疏植被 | 扇区法 | 10.16 | 1.22 | 69.57 | 12.89 | 0.15:1 | |||||||||||
样带法—MM样带 | 28.04 | 2.51 | 96.74 | 8.63 | 0.29:1 | ||||||||||||
样带法—MQ样带 | 28.56 | 2.32 | 72.77 | 7.68 | 0.39:1 | ||||||||||||
样带法—MC样带 | 66.06 | 5.17 | 35.49 | 4.01 | 1.86:1 | ||||||||||||
脊线法 | 1016.77 | 3.46 | 1073.82 | 4.37 | 0.95:1 | ||||||||||||
水体 | 扇区法 | 9.50 | 1.14 | 0.01 | 0.00 | 950:1 | |||||||||||
样带法—MM样带 | 9.67 | 0.86 | 6.90 | 0.62 | 1.40:1 | ||||||||||||
样带法—MQ样带 | 7.90 | 0.64 | 1.43 | 0.15 | 5.52:1 | ||||||||||||
样带法—MC样带 | 13.69 | 1.07 | 2.40 | 0.27 | 5.70:1 | ||||||||||||
脊线法 | 182.87 | 0.62 | 152.43 | 0.62 | 1.20:1 | ||||||||||||
建设用地 | 扇区法 | 0.32 | 0.04 | 1.17 | 0.22 | 0.27:1 | |||||||||||
样带法—MM样带 | 0.19 | 0.02 | 0.48 | 0.04 | 0.40:1 | ||||||||||||
样带法—MQ样带 | - | - | - | - | - | ||||||||||||
样带法—MC样带 | - | - | - | - | - | ||||||||||||
脊线法 | 13.68 | 0.05 | 0.79 | 0.00 | 17.30:1 | ||||||||||||
裸地 | 扇区法 | 34.37 | 4.13 | 88.18 | 16.33 | 0.39:1 | |||||||||||
样带法—MM样带 | 87.34 | 7.81 | 277.88 | 24.80 | 0.31:1 | ||||||||||||
样带法—MQ样带 | 176.45 | 14.34 | 192.32 | 20.30 | 0.92:1 | ||||||||||||
样带法—MC样带 | 145.79 | 11.42 | 203.95 | 23.06 | 0.71:1 | ||||||||||||
脊线法 | 4010.33 | 13.63 | 7750.94 | 31.56 | 0.52:1 | ||||||||||||
扇区法 | 3.18 | 0.38 | 14.93 | 2.77 | 0.21:1 | ||||||||||||
沼泽湿地 | 样带法—MM样带 | 8.35 | 0.75 | 12.86 | 1.15 | 0.65:1 | |||||||||||
样带法—MQ样带 | 9.07 | 0.74 | 22.95 | 2.42 | 0.40:1 | ||||||||||||
样带法—MC样带 | 11.91 | 0.93 | 81.77 | 9.25 | 0.15:1 | ||||||||||||
脊线法 | 279.49 | 0.95 | 787.95 | 3.21 | 0.36:1 | ||||||||||||
冰川雪被** | 扇区法 | 22.83 | 2.74 | 20.26 | 3.75 | 1.13:1 | |||||||||||
样带法—MM样带 | 83.27 | 7.44 | 138.51 | 12.36 | 0.60:1 | ||||||||||||
样带法—MQ样带 | 130.48 | 10.60 | 127.74 | 13.48 | 1.02:1 | ||||||||||||
样带法—MC样带 | 83.11 | 6.51 | 101.19 | 11.44 | 0.82:1 | ||||||||||||
脊线法 | 1355.58 | 4.61 | 1740.59 | 7.09 | 0.78:1 | ||||||||||||
总计 | 扇区法 | 832.73 | 100.00 | 539.87 | 100.00 | 1.54:1 | |||||||||||
样带法—MM样带 | 1118.57 | 100.00 | 1120.36 | 100.00 | 1.00:1 | ||||||||||||
样带法—MQ样带 | 1230.85 | 100.00 | 947.48 | 100.00 | 1.30:1 | ||||||||||||
样带法—MC样带 | 1276.59 | 100.00 | 884.27 | 100.00 | 1.44:1 | ||||||||||||
脊线法 | 29428.43 | 100.00 | 24559.97 | 100.00 | 1.20:1 |
Tab. 3
Altitudinal distribution range of land cover types on north and south slopes based on different division methods
类型 | 划分方法 | 南坡 | 北坡 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔范围 | 核心分布带 | 优势带 | 海拔范围 | 核心分布带 | 优势带 | ||||||||||||
农田 | 扇区法 | 100~4000 | 600~1700 | 100~1800 | 4000~4500 | 4100~4500 | - | ||||||||||
样带法—MQ样带 | 100~4000 | 1100~2200 | 1000~1700 | 4200~4600 | 4200~4500 | - | |||||||||||
样带法—MM样带 | 100~4000 | 700~1500 | - | 3900~4500 | 4300~4500 | - | |||||||||||
样带法—MC样带 | 200~4000 | 500~1400 | 200~1400 | 4200~4500 | 4400~4500 | - | |||||||||||
脊线法 | 96~4300 | 700~1700 | 100~1500 | 2300~4500 | 4100~4500 | - | |||||||||||
森林 | 扇区法 | 100~4000 | 500~2000 | 1800~3600 | - | - | - | ||||||||||
样带法—MQ样带 | 100~4000 | 1700~3100 | 100~1000 1700~3900 | - | - | - | |||||||||||
样带法—MM样带 | 100~4000 | 600~1900 | 100~3700 | - | - | - | |||||||||||
样带法—MC样带 | 200~4000 | 700~2200 | 1400~3800 | - | - | - | |||||||||||
脊线法 | 100~4000 | 1100~2600 | 1500~3800 | 2100~4000 | 3200~4000 | 2300~3900 | |||||||||||
灌丛 | 扇区法 | 1700~5100 | 3300~4200 | 3600~4000 | - | - | - | ||||||||||
样带法—MQ样带 | 1700~5000 | 3200~4200 | 3900~4100 | - | - | - | |||||||||||
样带法—MM样带 | 1600~5000 | 3700~4200 | 3700~4200 | 4300~5300 | 4500~5000 | - | |||||||||||
样带法—MC样带 | 1600~5100 | 3500~4300 | 3800~4000 | - | - | - | |||||||||||
脊线法 | 300~4800 | 3400~4600 | 3800~4200 | 2400~4800 | 4200~4800 | 3900~4100 | |||||||||||
草地 | 扇区法 | 1600~5900 | 4100~5100 | 4000~5000 | 4000~5100 | 4500~5000 | 4000~5100 | ||||||||||
样带法—MQ样带 | 3000~5100 | 4600~5100 | - | 4200~5100 | 4400~4900 | 4200~5100 | |||||||||||
样带法—MM样带 | 1500~5100 | 4100~5000 | - | 3900~5100 | 4400~5000 | 4000~5100 | |||||||||||
样带法—MC样带 | 2500~5100 | 4300~5000 | 4000~5000 | 4200~5100 | 4300~4700 | 4400~5000 | |||||||||||
脊线法 | 1400~5100 | 4400~5000 | 4400~5000 | 2500~5100 | 4400~5000 | 4100~5100 | |||||||||||
稀疏植被 | 扇区法 | 3000~5300 | 4400~5300 | - | 4600~5400 | 5000~5400 | 5100~5400 | ||||||||||
样带法—MQ样带 | 3000~5300 | 4500~5300 | - | 4700~5300 | 5000~5300 | 5100~5300 | |||||||||||
样带法—MM样带 | 3300~5300 | 4100~4800 | - | 4700~5300 | 5200~5300 | 5100~5300 | |||||||||||
样带法—MC样带 | 3100~5300 | 4500~5200 | - | 4700~5300 | 5200~5300 | 5200~5300 | |||||||||||
脊线法 | 2100~5300 | 4600~5300 | - | 4000~5400 | 5000~5400 | 5100~5400 | |||||||||||
水体 | 扇区法 | 100~2500 4200~5300 | 100~500 | - | 4200-4500 5000~5800 | 4200~4400 | - | ||||||||||
样带法—MQ样带 | 100~800 1400-2200 4600~5400 | 4900~5400 | - | 4200~4400 5700~6100 | 4200~4300 | - | |||||||||||
样带法—MM样带 | 100~900 3700~5300 | 100~500 | - | 4200~5300 | 4200~4300 4800~5000 | - | |||||||||||
样带法—MC样带 | 200~1800 4200~5300 | 200~700 | - | 4200~4400 5500~5800 | 4300~4400 | - | |||||||||||
脊线法 | 96~2900 3700~5300 | 200~700 4900~5300 | - | 2200~5300 | 4100~4600 | - | |||||||||||
建设用地 | 扇区法 | 1000~1700 | 1100~1300 1500~1600 | - | 4200~4400 | 4300~4400 | - | ||||||||||
样带法—MQ样带 | - | - | - | - | - | - | |||||||||||
样带法—MM样带 | 1500~1700 | 1500~1600 | - | 4200~4400 | 4300~4400 | - | |||||||||||
样带法—MC样带 | - | - | - | - | - | - | |||||||||||
脊线法 | 400~2400 | 1000~1600 | - | 4200~4400 | 4200~4400 | - | |||||||||||
裸地 | 扇区法 | > 3000 | 4800~5900 | 5000~5700 | > 4200 | 5100~5600 | 5400~6000 | ||||||||||
样带法MQ样带 | > 3000 | 5000~5900 | 4100~5500 | > 4200 | 5000~5900 | 5300~6100 | |||||||||||
样带法MM样带 | > 3400 | 4300~5200 | 4200~5100 | > 4300 | 5100~5700 | 5300~5900 | |||||||||||
样带法MC样带 | > 3100 | 5000~5500 | 5000~5900 | > 4300 | 5000~5800 | 5000~5200 5300~6100 | |||||||||||
脊线法 | > 1100 | 4700~5700 | 4200~4400 5000~5700 | > 3000 | 5000~5700 | 5400~6000 | |||||||||||
沼泽湿地 | 扇区法 | < 2800 | 100~500 | - | 4000~5000 | 4200~4500 | - | ||||||||||
样带法MQ样带 | < 4900 | 100~1000 | - | 4200~5200 | 4200~4500 | - | |||||||||||
样带法MM样带 | 100~4500 | 400~1100 | - | 3900~5300 | 4000~4400 | 3900~4000 | |||||||||||
样带法MC样带 | < 5200 | 200~1400 | - | < 5500 | 4300~4400 | - | |||||||||||
脊线法 | < 5100 | 200~1400 | - | 3500~5300 | 4100~4400 | - | |||||||||||
冰川雪被 | 扇区法 | > 4400 | 5200~5900 | > 5700 | > 5100 | 6000~6600 | > 6000 | ||||||||||
样带法MQ样带 | > 4800 | 5100~5800 | > 5500 | > 5400 | 6000~6700 | > 6100 | |||||||||||
样带法MM样带 | > 4100 | 5000~6000 | > 5100 | > 4300 | 5200~6300 | > 5900 | |||||||||||
样带法MC样带 | > 4600 | 4700~5700 | > 5900 | > 5400 | 6000~6600 | > 6100 | |||||||||||
脊线法 | > 4000 | 5100~5900 | > 5700 | > 3800 | 5400~6300 | > 6000 |
Tab. 4
Comparison of altitudinal distribution of land cover, climate and soil on south and north slopes of Mt. Qomolangma
珠峰气候垂直带a | 珠峰土壤垂直带a | 珠峰(扇区法)土地覆被优势带b | ||||||
---|---|---|---|---|---|---|---|---|
海拔(m) | 垂直气候带类型 | 海拔(m) | 垂直土壤带类型 | 优势带 | 土地覆被类型 | |||
南坡 | 1600~2500 | 山地亚热带 | 1600~2500 | 山地黄棕壤 | 100~1800 | 农田 | ||
2500~3100 | 山地暖温带 | 2400~3100 | 山地酸性棕壤 | 1800~3600 | 森林 | |||
3100~3900 | 山地寒温带 | 3100~4100 | 山地漂灰土 | 3600~4000 | 灌丛 | |||
3900~4700 | 亚高山寒带 | 4100~4500 | 亚高山灌丛草甸土 | |||||
4100~4500 | 亚高山草甸土 | 4000~5000 | 草地 | |||||
4500~4800 | 高山草甸土 | |||||||
4700~5500 | 高山寒冻带 | 4800~5600 | 高山寒漠土 | 5000~5700 | 裸地 | |||
> 5500 | 高山冰雪带 | > 5600 | 冰和雪 | > 5700 | 冰川雪被 | |||
北坡 | 4000~5000 | 高原寒冷带 | 4400~4700 | 亚高山草原土 | 4000~5100 | 草地 | ||
5000~6000 | 高山寒冻带 | 4700~5200 | 高山草甸草原土 | 5100~5400 | 稀疏植被 | |||
5200~5500 | 高山寒漠土 | 5400~6000 | 裸地 | |||||
> 6000 | 高山冰雪带 | > 5500 | 冰和雪 | > 6000 | 冰川雪被 |
Tab. 5
Comparison of altitudinal distribution of land cover and vegetation on the slope of Mt. Qomolangma
珠峰(扇区法)土地覆被类型垂直分布a | 珠峰植被垂直分带b | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分布范围 (m) | 核心分布 (m) | 优势带 (m) | 土地覆被类型 及构成信息 | 分布范围 (m) | 植被类型及组成 | |||||||||
南坡 | 100~4000 | 600~1700 | 100~1800 | 农田 < 1000 m,农田—常绿阔叶林交错分布。 1400~1800 m,农田—常绿落叶阔叶混交林交错分布。 农作物主要有水稻、玉米、小麦、黍类、土豆。 | < 1000(1200) | 季雨林带 娑罗双树季雨林带的上限一般在海拔1000 m左右,局部达1200 m。 | ||||||||
1000~2500 | 常绿阔叶林带 通常海拔2000 m以下以印栲、木荷为主,2000 m以上中国境内被铁椆、粗穗石柯替代,尼泊尔境内被L.spicata为主的山地常绿阔叶林替代。 | |||||||||||||
100~4000 | 500~2000 | 1800~3600 | 森林 常绿落叶阔叶混交林 | |||||||||||
2500~3000 (3100) | 山地针叶阔叶(常绿、落叶)混交林带 局部上限达海拔3100m,是整个南坡植被垂直带谱中幅度较窄的一个带。主要由铁杉和高山栎的纯林或混交林组成。 | |||||||||||||
3000~3800 (4100) | 亚高山针叶林带 主要由冷杉林构成。阴坡分布冷杉林和糙皮桦林,阳坡高山栎林、还有桧柏梳林和灌丛。 | |||||||||||||
1700~5100 | 3300~4200 | 3600~4000 | 灌丛 优势种以钟花杜鹃、高山柏和刚毛杜鹃等为主。 | 3800(4100)~4500 | 高山灌丛 南坡以扁芒草禾草草甸和桧柏灌丛为主。北坡以杜鹃为主的小叶矮灌丛。 | |||||||||
1600~5900 | 4100~5100 | 4000~5000 | 草地 伴有撂荒地。 | 4500~5200 | 高山草甸 冰草苔原和多种垫状植物、杂草类的高山草甸。 | |||||||||
3000~5300 | 4400~5300 | 稀疏植被 | ||||||||||||
> 3000 | 4800~5900 | 5000~5700 | 裸地 | 5200~5500 (5600) | 地衣砾石带 地面覆盖砾石、冰碛物,表面生有地图黄绿衣、粗糙碟衣、鸡皮衣、裂叶石耳、红橙衣、菊叶梅衣印等。 | |||||||||
> 4400 | 5200~5900 | > 5700 | 冰川雪被 | > 5500(5600) | 永久冰雪带 | |||||||||
100~2500 4200~5300 | 100~500 | 水体 河流与湖泊 | ||||||||||||
< 2800 | 100~500 | 沼泽湿地 | ||||||||||||
1000~1700 | 1100~1300 1500~1600 | 建设用地 | ||||||||||||
北坡 | 4000~4500 | 4100~4500 | 4000~5100 | 草地 以高寒草地分布为主,在河谷中分布农田。 | 3900~4400 | 草原带 以白草、固砂草草原为主。 | ||||||||
4000~5100 | 4500~5000 | 草地 高寒草原,以藏沙蒿,藏白蒿,细裂叶莲蒿,固沙草等为主。 | 4400~5000 | 高山草原带 以紫花针茅草原为主。 | ||||||||||
北坡 | 4600~5400 | 5000~5400 | 5100~5400 | 稀疏植被 主要植物为垫状点地梅,山地蚤缀,绢毛棘豆。 | 5000~5700 | 高山草甸与稀疏垫状植被带 分布冰川苔原、嵩草草甸,并且杂有多种垫状植物。 | ||||||||
> 4200 | 5100-5600 | 5400~6000 | 裸地 | |||||||||||
5700~5800 (6200) | 地衣、砾石带 | |||||||||||||
> 5100 | 6000~6600 | > 6000 | 冰川雪被 | >5800~6200 | 永久冰雪带 | |||||||||
4200~4500 5000~5800 | 4200~4400 | 水体 河流与湖泊 | ||||||||||||
4000~5000 | 4200~4500 | 沼泽湿地 | ||||||||||||
4200~4400 | 4300~4400 | 建设用地 |
[1] | Haberl H, Erb K H, Krausmann F . et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(31):12942-12945. |
[2] |
Pitman A, Avila F, Abramowitz G , et al. Importance of background climate in determining impact of land-cover change on regional climate. Nature Climate Change, 2011,1(9):472-475.
doi: 10.1038/nclimate1294 |
[3] |
He F, Vavrus S, Kutzbach J , et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophysical Research Letters, 2014,41(2):623-631.
doi: 10.1002/2013GL058085 |
[4] | Mooney H, Duraiappah A, Larigauderie A . Evolution of natural and social science interactions in global change research programs. Proceedings of the National Academy of Sciences of the United States of America, 2013,110:3665-3672. |
[5] | Walter H . Vegetation of the earth in relation to climate and the eco-physiological conditions. London: The English Universities press Ltd., 1973. |
[6] |
Dullinger S . Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invisibility. Journal of Ecology, 2004,92:241-252.
doi: 10.1111/jec.2004.92.issue-2 |
[7] | Allan N J R . Accessibility and altitudinal zonation models of mountains. Mountain Research & Development, 1986,6(3):185-194. |
[8] |
Callaway R M . Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 1997,112(2):143-149.
doi: 10.1007/s004420050293 |
[9] | Grabherr G, Gottfried M, Paull H . Climate effects on mountain plants. Nature, 1994,369(6480):448. |
[10] | Mu Changcheng . Succession of Larix olgensis and Betula platyphlla-marsh ecotone communities in Changbai Mountain. Chinese Journal of Applied ecology, 2003,14(11):1813-1819. |
[ 牟长城 . 长白山落叶松和白桦—沼泽生态交错带群落演替规律研究. 应用生态学报, 2003,14(11):1813-1819.] | |
[11] |
Beniston M . Climatic change in mountain regions: A review of possible impacts. Climatic Change, 2003,59(1/2):5-31.
doi: 10.1023/A:1024458411589 |
[12] |
Gian-Reto W, Eric P, Peter C , et al. Ecological responses to recent climate change. Nature, 2002,416(6879):389-395.
doi: 10.1038/416389a |
[13] | Liang E, Wang Y, Piao S , et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(16):4380-4385. |
[14] | Xu Juan, Zhang Baiping, Tan Jing , et al. Spatial relationship between altitudinal vegetation belts and climatic factors in the Qinghai-Tibetan Plateau. Mountain in Reserach, 2009,27(6):663-670. |
[ 许娟, 张百平, 谭靖 , 等. 青藏高原植被垂直带与气候因子的空间关系. 山地学报, 2009,27(6):663-670.] | |
[15] |
Yao Yonghui, Xu Mei, Zhang Baiping . Implication of the heating effect of the Tibetan Plateau for mountain altitudinal belts. Acta Geographica Sinica, 2015,70(3):407-419.
doi: 10.11821/dlxb201503005 |
[ 姚永慧, 徐美, 张百平 . 青藏高原增温效应对垂直带谱的影响. 地理学报, 2015,70(3):407-419.]
doi: 10.11821/dlxb201503005 |
|
[16] |
Li X X, Liang E Y, Gricar J , et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 2017,62(11):804-812.
doi: 10.1016/j.scib.2017.04.025 |
[17] | Liang E Y, Wang Y F, Piao S L , et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(16):4380-4385. |
[18] | Cidanlunzhu . Survey of Mount Qomolangma Nature Reserve. China Tibetology, 1997(1):3-22. |
[ 次旦伦珠 . 珠穆朗玛峰自然保护区概况. 中国藏学, 1997(1):3-22.] | |
[19] |
Zhang Y L, Gao J G, Liu L S , et al. NDVI-based vegetation changes and their response to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayans. Global and Planetary Change, 2013,108:139-148.
doi: 10.1016/j.gloplacha.2013.06.012 |
[20] |
Wu X, Gao J G, Zhang Y L , et al. Land cover status in the Koshi River Basin, Central Himalayas, Journal of Resources and Ecology, 2017,8(1):10-19.
doi: 10.5814/j.issn.1674-764x.2017.01.003 |
[21] | Mount Qomolangma Group of Nanjing Institute of Soil Research, Chinese Academy of Sciences. The characteristics of soil geographical distribution in the Mount Qomolangma area//Tibet Scientific Expedition Team of the Chinese Academy of Sciences. A Report on the Scientific Investigation of the Mount Qomolangma Area. Beijing: Science Press, 1975. |
[ 中国科学院南京土壤研究所珠峰组. 珠穆朗玛峰地区土壤地理分布特点//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告. 北京: 科学出版社, 1975.] | |
[22] | Zhang Jingwei, Jiang Shu . A primary study on the vertical vegetation belt of Mt. Jolmo-Lungma (Everest) Region and its relationship with horizontal zone. Acta Botanica Sinica, 1973,15(2):221-236. |
[ 张经炜, 姜恕 . 珠穆朗玛峰地区的植被垂直分带及其与水平地带关系的初步研究. 植物学报, 1973,15(2):221-236.] | |
[23] |
Nie Yong, Zhang Yili, Liu Linshan , et al. Monitoring glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve, 1976-2006. Acta Geographica Sinica, 2010,65(1):13-28.
doi: 10.11821/xb201001003 |
[ 聂勇, 张镱锂, 刘林山 , 等. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测. 地理学报, 2010,65(1):13-28.]
doi: 10.11821/xb201001003 |
[1] | RUAN Hongwei,YU Jingjie. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015 [J]. Acta Geographica Sinica, 2019, 74(7): 1292-1304. |
[2] | BAI Yan, FENG Min. Data fusion and accuracy evaluation of multi-source global land cover datasets [J]. Acta Geographica Sinica, 2018, 73(11): 2223-2235. |
[3] | Lingling ZHAO, Changming LIU, Xiaoxiao WU, Lihong LIU, Zhonggen WANG, SOBKOWIAK Leszek. A review of underlying surface parametrization methods in hydrologic models [J]. Acta Geographica Sinica, 2016, 71(7): 1094-1104. |
[4] | Xuezhen ZHANG, Jiyuan LIU, Zhe XIONG, Hongwen ZHANG. Simulated effects of agricultural development on surface air temperature over Central and Eastern China in the late 20th century [J]. Acta Geographica Sinica, 2015, 70(9): 1423-1433. |
[5] | Yong XU, Xiaoyi SUN, Qing TANG. Human activity intensity of land surface: Concept, method and application in China [J]. Acta Geographica Sinica, 2015, 70(7): 1068-1079. |
[6] | ZHOU Wei, GANG Chengcheng, LI Jianlong, ZHANG Chaobin, MU Shaojie, SUN Zhenguo. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010 [J]. Acta Geographica Sinica, 2014, 69(1): 15-30. |
[7] | ZHAI Jun, LIU Ronggao, LIU Jiyuan, ZHAO Guosong. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010 [J]. Acta Geographica Sinica, 2013, 68(7): 875-885. |
[8] | LIU Yue, Shintaro Goto, ZHUANG Dafang, KUANG Wenhui. Urban Surface Heat Flux Inversion Based on Infrared Remote Sensing and the Relationship with Land Cover [J]. Acta Geographica Sinica, 2012, 67(1): 101-112. |
[9] | LIU Zhenhuan, WANG Yanglin, PENG Jian, XIE Miaomiao, LI You. Using ISA to Analyze the Spatial Pattern of Urban Land Cover Change: A Case Study in Shenzhen [J]. Acta Geographica Sinica, 2011, 66(7): 961-971. |
[10] | HOU Yuting, WANG Shugong, NAN Zhuotong. A Rule-based Land Cover Classification Method for the Heihe River Basin [J]. Acta Geographica Sinica, 2011, 66(4): 549-561. |
[11] | YU Qiangyi, WU Wenbin, TANG Huajun, YANG Peng, CHEN Zhongxin, CHEN Youqi. Complex System Theory and Agent-based Modeling: Progresses in Land Change Science [J]. Acta Geographica Sinica, 2011, 66(11): 1518-1530. |
[12] | NIE Yong1; 2; ZHANG Yili1; LIU Linshan1; ZHANG Jiping1; 2(1.Institute of Geographic Sciences and Natural Resources Research; Chinese Academy of Sciences; Beijing 100101; China; 2.Graduate University of Chinese Academy of Sciences.Beijing 100049; China). Monitoring Glacier Change Based on Remote Sensing in the Mt. Qomolangma National Nature Preserve,1976-2006 [J]. Acta Geographica Sinica, 2010, 65(1): 13-28. |
[13] | TANG Huajun, WU Wenbin, YANG Peng, CHEN Youqi, Peter H. VERBURG. Recent Progresses of Land Use and Land Cover Change (LUCC) Models [J]. Acta Geographica Sinica, 2009, 64(4): 456-468. |
[14] | ZHAO Ruifeng,CHEN Yaning,LI Weihong,ZHANG Lihua,WU Shixin,HUANG Qing. Land Cover Change and Landscape Pattern in the Mainstream of the Tarim River [J]. Acta Geographica Sinica, 2009, 64(1): 95-106. |
[15] | ZHANG Xiaoping, ZHANG Lu, MU Xingmin, LI Rui. The Mean Annual Water Balance in the Hekou- Longmen Section of the Middle Yellow River : Testing of the Regional Scale Water Balance Model and Its Calibr ation [J]. Acta Geographica Sinica, 2007, 62(7): 753-763. |