Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (5): 917-930.doi: 10.11821/dlxb202005003
• Theory and Method • Previous Articles Next Articles
XU Chenchen1,2, YE Huping1, YUE Huanyin1,3,4, TAN Xiang1,4, LIAO Xiaohan1,4()
Received:
2019-11-11
Revised:
2020-04-20
Online:
2020-05-25
Published:
2020-07-25
Contact:
LIAO Xiaohan
E-mail:liaoxh@igsnrr.ac.cn
Supported by:
XU Chenchen, YE Huping, YUE Huanyin, TAN Xiang, LIAO Xiaohan. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap[J].Acta Geographica Sinica, 2020, 75(5): 917-930.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Comparison of civil aviation airline network and low-altitude public air route network of UAVs
类型 | 民用航空航线网 | 无人机低空公共航路网 |
---|---|---|
规划范围 | 一般是6000 m以上的中高空空域。 | 低空甚至超低空空域,一般在移动通信信号覆盖高度范围内(300 m [ |
与地面交通联系 | 不利用地面交通设施,与地面交通无直接联系。 | 基于地面路网生成第I级航路,与地面路网融合度较高。 |
地理信息 | 与地表地理信息几乎无关,局部高原地区受地形和恶劣天气影响。 | 考虑的地理约束要素较多,要素尺度跨度大,如地形、建筑物、电力线(杆)、风力发电塔、水域、地面路网、移动通信基站、无人机管控区、大气环境等;数据来源于地理信息调查和无人机遥感地物快速识别和提取技术。 |
航路/线设计 | 先构建交通枢纽,再划设航线,最后形成航线网;枢纽间的航线由途径的导航台间连线构成,避开了航空管制区和危险天气易发区。 | 迭代构建:基于地面路网垂直拔高构建第I级航路网;利用正约束地理要素移动构建第II级航路网;规避负约束地理要素构建第III级航路网;经过仿真和实际飞行测试分别构建第IV、V级航路网。 |
航路/线更新与时效性 | 时效性长,不轻易更新。 | 由于影响地理要素多且更新快,航路的更新周期较短,时效性也较短,需定期检测冲突航路段并进行局部航路的动态重规划。 |
Fig. 4
Diagram of the relative position between the road and the green land and the river ((a) represents that green land is located on either side of road; (b) represents that green land is located in the middle of the road; (c) represents that river is located on either side of the road. Both the green land and river in each figure are marked with yellow lines.)
[1] | Alex F . Drones are everywhere. Get used to it. Time, 2018,22(191):24-25. |
[2] | Stolaroff J K, Samaras C, O'Neill E R, , et al. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nature Communication, 2018,9(1):1-13. |
[3] | Floreano D, Wood R J . Science, technology and the future of small autonomous drones. Nature, 2015,521(7553):460-466. |
[4] | Airworthiness Certification. Monthly Report of Real-name Registration of UAVs (2019-7). 2019. . |
[ 无人机适航审定. 无人机实名登记月报情况(2019-7). 2019. .] | |
[5] | Inspection Center for Civil UAVs. The Statistics Report of UAV Cloud Data in Second Quarter of 2019. 2019. . |
[ 民用无人机检验中心. 2019年第二季度无人机云数据统计. 2019. .] | |
[6] | Mohamed N, Al-Jaroodi J, Jawhar I , et al. Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 2018, 1-15. Doi: 10.1016/j.techfore.2018.05.004. |
[7] | Kopardekar P . Unmanned Aerial System ( UAS) Traffic Management (UTM): Enabling low-altitude airspace and UAS operations. 2014. NASA Center for Aerospace Information. . . |
[8] | SESAR . U-Space Blueprint. Belgium: Bietlot Press, 2017: 2-5. |
[9] | Zhang Fengfan. UAVs regulation: Policy and technology. Paper of Civil Aviation Administration of China, 2019-11-8. . |
[ 张丰蘩 . 无人机管控: 政策与科技并行. 中国民航报, 2019-11-08. .] | |
[10] | Mohammed S M F B, Chi W C, Wang Z K , et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations. 2018. AIAA SciTech Forum. Kissimmee, Florida. Doi: 10.2514/6.2018-2260. |
[11] | Bai Yiqin, Chen Xinfeng. Statistical Report of UAV Operation Data in China. Beijing: Civil Aviation Administration of China Press. 2019: 5. |
[ 柏艺琴, 陈新锋 . 中国无人机运行数据统计报告, 北京: 中国民航出版社, 2019: 5.] | |
[12] | CAAC. Data Specification of UAV Cloud System Interface (MH/T 2009-2017). . |
[ 中国民用航空局. 无人机云系统接口数据规范(MH/T 2009-2017). 2017. .] | |
[13] | CAAC. Guidelines on Promoting the Development of Civil Unmanned Aviation (Draft for Comments). 2019. . |
[ 中国民用航空局. 关于促进民用无人驾驶航空发展的指导意见(征求意见稿). 2019. .] | |
[14] | IEEE. 1939.1-Standard for a framework for structuring low altitude airspace for unmanned aerial vehicles (UAV) operations. 2019. . |
[15] | Liao Xiaohan, Xu Chenchen, Yue Huanyin . Research on UAV low-altitude public air route planning based on geographic information. UAV, 2018(2):45-49. |
[ 廖小罕, 徐晨晨, 岳焕印 . 基于地理信息的无人机低空公共航路规划研究. 无人机, 2018(2):45-49.] | |
[16] | Xu Yegang. The CAAC issues the first trial operation "license" for urban UAVs. Paper of Civil Aviation Administration of China, 2019-11-8. . |
[ 徐业刚 . 民航局颁发首张城市无人机试运行“牌照”. 中国民航报, 2019-11-8. .] | |
[17] | Antwork. China UAV logistics route network planning seminar was held in Hangzhou for the first time. 2019. . |
[ 迅蚁. 中国无人机物流航线网络规划研讨会初次在杭举行. 2019. .] | |
[18] | Handler C H . New York state creates nation's first air corridor for unmanned aerial vehicles. 2018. . |
[19] | Airbus . Skyways: Urban air delivery explored. 2017. . |
[20] | Lu Ming, Liao Xiaohan, Yue Huanyin , et al. Determining the distribution of unmanned aerial vehicles airports for the emergency monitoring of floods in China. Journal of Geo-information Science, 2019,21(6):854-864. |
[ 鹿明, 廖小罕, 岳焕印 , 等. 面向全国洪涝灾害应急监测的无人机空港布局. 地球信息科学学报, 2019,21(6):854-864.] | |
[21] | Xu Chenchen, Liao Xiaohan, Yue Huanyin , et al. Construction of a UAV low-altitude public air route based on an improved ant colony algorithm. Journal of Geo-information Science, 2019,21(4):570-579. |
[ 徐晨晨, 廖小罕, 岳焕印 , 等. 基于改进蚁群算法的无人机低空公共航路构建方法. 地球信息科学学报, 2019,21(4):570-579.] | |
[22] | IGSNRR. The integrated management cloud-based system of UAVs named "Zhongke SkyNet" was officially approved to operate by the civil aviation administration of China. 2019. . The integrated management cloud-based system of UAVs named "Zhongke SkyNet" was officially approved to operate by the civil aviation administration of China. 2019. . |
[ 中国科学院地理科学与资源研究所. “中科天网”无人机综合管理云系统正式获得中国民用航空局批准运行. 2019. . “中科天网”无人机综合管理云系统正式获得中国民用航空局批准运行. 2019. .] | |
[23] | CAAC. Test report of safe flights in low altitude for networked UAVs. 2018. . |
[ 中国民航总局. 低空联网无人机安全飞行测试报告. 2018. .] | |
[24] | Century Business Review. Drones go into cities, Drones go into cities, and the Starbucks and the Luckin Coffee can be delivered. 2018. . |
[ 世纪商业评论. 星巴克、瑞幸咖啡均可实现配送. 2018. .] | |
[25] | CAAC. Interim regulations on flight management of unmanned aircraft (Draft for comments). 2018. . |
[ 中国民用航空局. 《无人驾驶航空器飞行管理暂行条例(征求意见稿)》. 2018. .] | |
[26] | CAAC. Fence of unmanned aircraft system. MH/T 2008-2017. 2017. . |
[ 中国民用航空局. 无人机围栏. 2017. MH/T 2008-2017 .] | |
[27] |
Colomina I, Molina P . Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 |
[28] | Liao Xiaohan . "UAV remote sensing and networking" album introduction. Journal of Geo-information Science, 2019,21(4):475. |
[ 廖小罕 . “无人机遥感与组网”专辑导言. 地球信息科学学报, 2019,21(4):475.] | |
[29] | Oliveira H C, Guizilini V C, Nunes I P , et al. Failure detection in row crops from UAV images using morphological operators. IEEE Geoscience Remote Sensing, 2018,15(7):991-995. |
[30] | Ammour N, Alhichri H, Bazi Y , et al. Deep learning approach for car detection in UAV imagery. Remote Sensing, 2017,9(4):1-15. |
[31] | Crommelinck S, Bennett R, Gerke M , et al. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sensing, 2016,689(8):1-28. |
[32] | Yao H, Qin R J, Chen X Y . Unmanned aerial vehicle for remote sensing applications: A review. Remote Sensing, 2019,1443(11):1-22. |
[33] | Zhao Changsen, Pan Xu, Yang Shengtian , et al. Measuring streamflow with low-altitude UAV imagery. Acta Geographica Sinica, 2019,74(7):1392-1408. |
[ 赵长森, 潘旭, 杨胜天 , 等. 低空遥感无人机影像反演河道流量. 地理学报, 2019,74(7):1392-1408.] | |
[34] | Liao X H, Xu C C, Yue H Y . Enable UAVs safely flight in low-altitude: A preliminary research of the public air route network of UAVs. International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 2019: 959-964. Doi: 10.1109/ICUAS.2019.8798083. |
[35] | Caltagirone L, Scheidegger S, Svensson L , et al. Fast LiDAR-based road detection using fully convolutional neural networks. IEEE Intelligent Vehicles Symposium (IV). Redondo Beach, CA, USA, 2017: 1019-1024. doi: 10.1109/IVS.2017.7995848. |
[36] | Chen Y, Fan R S, Yang X C , et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water, 2018,10(5):1-20. |
[37] | Nijhawan R, Sharma H, Sahni H , et al. A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features. 13th International Conference on Signal-Image Technology and Internet-Based Systems, Jaipur,India, 2017: 192-196. Doi: 10.1109/SITIS.2017.41. |
[38] | Gilani S A N, Awrangjeb M, Lu G . Fusion of LiDAR data and multispectral imagery for effective building detection based on graph and connected component analysis. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-3/W2:65-72. Doi: 10.5194/isprsarchives-XL-3-W2-65-2015. |
[39] | Yu Jie, Mu Chao, Feng Yanming , et al. Powerlines extraction techniques from airborne LiDAR data. Geomatics and Information Science of Wuhan University, 2011,36(11):1275-1279. |
[ 余洁, 穆超, 冯延明 , 等. 机载LiDAR点云数据中电力线的提取方法研究. 武汉大学学报(信息科学版), 2011,36(11):1275-1279.] | |
[40] | Bruijnen D, van Helvoort J, van de Molengraft R . Realtime motion path generation using subtargets in a rapidly changing environment. Robotics and Autonomous Systems, 2007,55(6):470-479. |
[41] | Zhen Ran, Zhen Shibo, Wu Xueli . An improved route planning algorithm for unmanned aerial vehicle based on artificial potential field. Journal of Hebei University of Sciences and Technology, 2017,38(3):278-284. |
[ 甄然, 甄士博, 吴学礼 . 一种基于人工势场的无人机航迹规划算法. 河北科技大学学报, 2017,38(3):278-284.] |
[1] | FU Yin, LIU Qiao, LIU Guoxiang, ZHANG Bo, CAI Jialun, WANG Xiaowen, ZHANG Rui. Monitoring glacier surface velocity and ablation using high-resolution UAV imagery [J]. Acta Geographica Sinica, 2021, 76(5): 1245-1256. |
[2] | ZHAO Changsen,PAN Xu,YANG Shengtian,LIU Changming,CHEN Xin,ZHANG Hanming,PAN Tianli. Measuring streamflow with low-altitude UAV imagery [J]. Acta Geographica Sinica, 2019, 74(7): 1392-1408. |