Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (3): 470-484.doi: 10.11821/dlxb202003003
• Climate Change • Previous Articles Next Articles
WANG Xiaoru1,2, TANG Zhiguang1(), WANG Jian3, WANG Xin2,3, WEI Junfeng2
Received:
2019-01-23
Revised:
2019-12-14
Online:
2020-03-25
Published:
2020-05-25
Contact:
TANG Zhiguang
E-mail:tangzhg11@hnust.edu.cn
Supported by:
WANG Xiaoru, TANG Zhiguang, WANG Jian, WANG Xin, WEI Junfeng. Monitoring of snowline altitude at the end of melting season in High Mountain Asia based on MODIS snow cover products[J].Acta Geographica Sinica, 2020, 75(3): 470-484.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Correlation coefficients between the snowline altitude at the end of melting season and temperature, precipitation in different subregions of High Mountain Asia during 2001-2016"
区域 | 夏季气温 | 年平均气温 | 夏季降水 | 年降水 |
---|---|---|---|---|
青藏高原东南部 | 0.69** | 0.72** | 0.42 | 0.40 |
横断山 | 0.34 | 0.34 | 0.29 | -0.01 |
祁连山 | 0.72** | 0.60* | 0.19 | 0.03 |
青藏高原内部 | 0.32 | 0.13 | -0.26 | -0.23 |
东天山 | 0.60* | 0.22 | -0.01 | 0.08 |
西天山 | 0.76** | 0.29 | 0.004 | -0.16 |
东喜马拉雅 | 0.67** | 0.38 | -0.14 | -0.21 |
东昆仑 | 0.64** | 0.47 | -0.09 | -0.06 |
中喜马拉雅 | 0.58* | 0.53* | 0.31 | -0.23 |
帕米尔 | 0.75** | 0.37 | 0.02 | -0.02 |
西喜马拉雅 | 0.83** | 0.55* | 0.01 | -0.01 |
阿尔泰—萨彦岭 | 0.66** | 0.12 | 0.28 | 0.02 |
希萨尔—阿莱山 | 0.83** | 0.11 | - | - |
兴都库什 | 0.63** | 0.26 | - | - |
西昆仑 | - | - | - | - |
喀喇昆仑 | - | - | - | - |
Tab. 2
Linear regression parameters between annual mass balances and the grid (30 km) snowline altitudeat the end of melting season for the 12 measured glaciers"
编号 | 冰川名称 | 物质平衡观测年数 | 线性方程 | R2 |
---|---|---|---|---|
1 | 帕隆94号冰川 | 10 | y=-20.797x+112856 | 0.36 |
2 | 七一冰川 | 7 | y=-6.0463x+30172 | 0.50 |
3 | 乌源1号冰川 | 16 | y=-4.4547x+19215 | 0.42 |
4 | 小冬克玛底冰川 | 10 | y=-49.359x+279566 | 0.64 |
5 | CHHOTASHIGRI | 12 | y=-8.8258x+46542 | 0.86 |
6 | CHORABARI | 7 | y=-0.3482x+1257.1 | 0.19 |
7 | TS.TUYUKSUYSKIY | 16 | y=-12.608x+50791 | 0.58 |
8 | MERA | 8 | y=-6.4232x+39766 | 0.58 |
9 | POKALDE | 6 | y=-6.415x+39131 | 0.32 |
10 | LEVIYAKTRU | 12 | y=-0.7471x+2283.9 | 0.01 |
11 | MALIYAKTRU | 12 | y=-6.7223x+22876 | 0.72 |
12 | VODOPADNIY(NO.125) | 12 | y=-5.0136x+17001 | 0.67 |
[1] | Parker S P . Dictionary of Earth Science. New York: McGraw-Hill Higher Education, 1997. |
[2] | Wunderle S, Droz M, Kleindienst H . Spatial and temporal analysis of the snow line in the Alps: Based on NOAA- AVHRR data. Geographica Helvetica, 2002,57(3):170-183. |
[3] | Baum S K, Crowley T J . Seasonal snowline instability in a climate model with realistic geography: Application to carboniferous glaciation. Geophysical Research Letters, 1991,18(9):1719-1722. |
[4] | Mengel J G, Short D A, North G R . Seasonal snowline instability in an energy balance model. Climate Dynamics, 1988,2(3):127-131. |
[5] | Krajčí P, Holko L, Perdigão R A P , et al. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology, 2014,519:1769-1778. |
[6] | Flint R F . Glacial and Quaternary Geology. New York: John Wiley Press, 1971. |
[7] | Pandey P, Kulkarni A V, Venkataraman G . Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980-2007. Geocarto International, 2013,28(4):311-322. |
[8] | Guo Zhongming, Gu Zhujun, Wu Hongbo , et al. Research progress of glacier snowline altitude. Remote Sensing Technology and Application, 2016,31(4):645-652. |
[ 郭忠明, 顾祝军, 吴红波 , 等. 冰川雪线高度研究进展. 遥感技术与应用, 2016,31(4):645-652.] | |
[9] | McFadden E M, Ramage J, Rodbell T . Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986-2005. The Cryosphere, 2011,5(2):419-430. |
[10] | Rabatel A, Bermejo A, Loarte E , et al. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? Journal of Glaciology, 2012,58(212):1027-1036. |
[11] | Tawde S A, Kulkarni A V, Bala G . Estimation of glacier mass balance: An approach based on satellite-derived transient snowlines and a temperature index driven by meteorological observations//American Geophysical Union. American Geophysical Union Fall Meeting Abstracts, 2015. 2015:C13B-0810. |
[12] | Xie Zichu, Zhou Zaigen, Li Qiaoyuan , et al. Progress and prospects of mass balance characretistic and responding to global change of glacier system in High Asia. Advances in Earth Science, 2009,24(10):1065-1072. |
[ 谢自楚, 周宰根, 李巧媛 , 等. 高亚洲冰川系统物质平衡特征及其对全球变化响应研究进展与展望. 地球科学进展, 2009,24(10):1065-1072.] | |
[13] | Huang X, Deng J, Wang W , et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sensing of Environment, 2017,190:274-288. |
[14] | Liu Shiyin, Ding Yongjian, Ye Baisheng , et al. Regional characretistics of glacier mass balance variations in High Asia. Journal of Glaciology and Geocryology, 2000,22(2):97-105. |
[ 刘时银, 丁永建, 叶佰生 , 等. 高亚洲地区冰川物质平衡变化特征研究. 冰川冻土, 2000,22(2):97-105.] | |
[15] | Li Jijun . An overview of China's glaciers. Journal of Glaciology and Geocryology, 1992,14(3):287. |
[ 李吉均 . 《中国冰川概论》. 冰川冻土, 1992,14(3):287.] | |
[16] | Lei L, Zeng Z, Zhang B . Method for detecting snow lines from MODIS data and assessment of changes in the Nianqingtanglha Mountains of the Tibet Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(3):769-776. |
[17] | Spiess M, Huintjes E, Schneider C . Comparison of modelled-and remote sensing-derived daily snow line altitudes at Ulugh Muztagh, northern Tibetan Plateau. Journal of Mountain Sciences, 2016,13(4):593-613. |
[18] | Verbyla D, Hegel T, Nolin A , et al. Remote sensing of 2000-2016 alpine spring snowline elevation in Dall Sheep Mountain Ranges of Alaska and Western Canada. Remote Sensing, 2017,9(11):1157-1174. |
[19] | Wang J, Li H, Liang J , et al. Extraction and assessment of snowline altitude over the Tibetan Plateau using MODIS fractional snow cover data (2001 to 2013). Journal of Applied Remote Sensing, 2014,8(1):084689. |
[20] | Bao Weijia, Liu Shiyin, Wu Kunpeng , et al. A method for extracting snowline alitude based on MODIS snow product. Journal of Glaciology and Geocryology, 2017,39(2):259-272. |
[ 鲍伟佳, 刘时银, 吴坤鹏 , 等. 一种基于MODIS积雪产品的雪线高度提取方法. 冰川冻土, 2017,39(2):259-272.] | |
[21] | Tang Zhiguang, Wang Jian, Liang Ji , et al. Monitoring of snowline altitude over the Tibetan Plateau based on MODIS data. Remote Sensing Technology and Application, 2015,30(4):767-774. |
[ 唐志光, 王建, 梁继 , 等. 基于MODIS的青藏高原雪线高度遥感监测. 遥感技术与应用, 2015,30(4):767-774.] | |
[22] | Tang Zhiguang, Wang Jian, Wang Xin , et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data. Mountain Research, 2017,35(3):412-419. |
[ 唐志光, 王建, 王欣 , 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析. 山地学报, 2017,35(3):412-419.] | |
[23] | Dwyer J, Schmidt G . The MODIS Reprojection Tool//Qu J J, Gao W, Kafatos M, et al. Earth Science Satellite Remote Sensing. Berlin: Springer, 2006. |
[24] | Tang Zhiguang, Wang Jian, Li Hongyi , et al. Arccuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau. Remote Sensing Technology and Application, 2013,28(3):423-430. |
[ 唐志光, 王建, 李弘毅 , 等. 青藏高原MODIS积雪面积比例产品的精度验证与去云研究. 遥感技术与应用, 2013,28(3):423-430.] | |
[25] | Tang Zhiguang, Wang Jian, Wang Xin , et al. Spatiotemporal variation of snow cover in Tianshan Mountains based on MODIS. Remote Sensing Technology and Application, 2017,32(3):556-563. |
[ 唐志光, 王建, 王欣 , 等. 近15年天山地区积雪时空变化遥感研究. 遥感技术与应用, 2017,32(3):556-563.] | |
[26] | Haeberliw. WGMS(World Glacier Monitoring Service). Netherlands: Springer, 2011. |
[27] | Hall D K, Riggs G A, Salomonson V V . Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 1995,54(2):127-140. |
[28] | Zhang Q, Kang S . Glacier snowline altitude variations in the Pamirs, Tajikistan, 1998-2013: Insights from remote sensing images. Remote Sensing Letters, 2017,8(12):1220-1229. |
[29] | Zhang Qibing, Kang Shichang, Zhang Guoshuai , et al. Changes of snow line altitude for glaciers on Western Nyainqentanglha range observed by remote sensing. Scientia Geographica Sinica, 2016,36(12):1937-1944. |
[ 张其兵, 康世昌, 张国帅 . 念青唐古拉山脉西段雪线高度变化遥感观测. 地理科学, 2016,36(12):1937-1944.] | |
[30] | Klein A G, Isacks B L . Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. Global and Planetary Change, 1999,22:139-154. |
[31] | Han Fang, Zhang Baiping, Tan Jing , et al. The effect of mountain basal elevation on the distribution of snowline with different mountain basal elevations in Tibetan Plateau and its surrounding areas. Geographical Research, 2014,33(1):23-30. |
[ 韩芳, 张百平, 谭靖 , 等. 山体基面高度对青藏高原及其周边地区雪线空间分布的影响. 地理研究, 2014,33(1):23-30.] | |
[32] | Ye Wanhua, Wang Feiteng, Li Zhongqin , et al. Temporal and spatial distributions of the equilibrium line altitudes of the monitoring glaciers in High Asia. Journal of Glaciology and Geocryology, 2016,38(6):1459-1469. |
[ 叶万花, 王飞腾, 李忠勤 , 等. 高亚洲定位监测冰川平衡线高度时空分布特征研究. 冰川冻土, 2016,38(6):1459-1469.] | |
[33] | Han F, Zhang B P, Zhao F , et al. Estimation of mass elevation effect and its annual variation based on MODIS and NECP data in the Tibetan Plateau. Journal of Mountain Science, 2018,15(7):1510-1519. |
[34] | Zhang Baiping, Yao Yonghui . Implications of mass elevation effect for the altitudinal patterns of global ecology. Journal of Geographical Sciences, 2016,26(7):871-877. |
[35] | Han F, Zhang B, Yao Y , et al. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arctic Antarctic and Alpine Research, 2011,43(2):207-212. |
[36] | Han F, Yao Y, Dai S , et al. Mass elevation effect and its forcing on timberline altitude. Journal of Geographical Sciences, 2012,22(4):609-616. |
[37] | Yao Tandong, Liu Shiyin, Pu Jianchen , et al, Recent retreat of high Asian glaciers and its impact on northwest water resources. Earth Science, 2004,34(6):535-543. |
[ 姚檀栋, 刘时银, 蒲健辰 , 等. 高亚洲冰川的近期退缩及其对西北水资源的影响. 地球科学, 2004,34(6):535-543.] | |
[38] | Brun F, Berthier E, Wagnon P , et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 2017,10(9):668-673. |
[39] | Yao T, Thompson L G, Mosbrugger V , et al. Third Pole environment (TPE). Environmental Development, 2012,3:52-64. |
[40] | Hewitt K . The Karakoram anomaly? Glacier expansion and the 'elevation effect' Karakoram Himalaya. Mountain Research and Development, 2005,25(4):332-340. |
[41] | Bolch T, Kulkarni A, Kääb A , et al. The state and fate of Himalayan glaciers. Science, 2012,336(6079):310-314. |
[42] | Chen Yaning, Li Zhi, Fang Gonghuan , et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia. Acta Geographica Sinica, 2017,72(5):18-26. |
[ 陈亚宁, 李稚, 方功换 , 等. 气候变化对中亚天山山区水资源影响研究. 地理学报, 2017,72(5):18-26.] | |
[43] | Chen Anan, Chen Wei, Wu Hongbo , et al. The variations of firn line altitude on the Binglinchuan Glacier, Ulugh Muztagh during 2000-2013. Journal of Glaciology and Geocryology, 2014,36(5):1069-1078. |
[ 陈安安, 陈伟, 吴红波 , 等. 2000—2013年木孜塔格冰鳞川冰川粒雪线高度变化研究. 冰川冻土, 2014,36(5):1069-1078.] | |
[44] | Wang Ninglian . Grey relational analysis of the leading climatic factor influencing the changes of the equilibrium line. Journal of Glaciology and Geocryology, 1995,17(1):8-15. |
[ 王宁练 . 冰川平衡线变化的主导气候因子灰色关联分析. 冰川冻土, 1995,17(1):8-15.] | |
[45] | Wang Ninglian, He Jianqiao, Pu Jianchen , et al. Altitude of glacier balance line changes in Qilian Mountain in the last 50 years. Chinese Science Bulletin, 2010,55(32):3107-3115. |
[ 王宁练, 贺建桥, 蒲健辰 , 等. 近50年来祁连山七一冰川平衡线高度变化研究. 科学通报, 2010,55(32):3107-3115.] | |
[46] | Zhao Jun, Huang Yongsheng, Shi Yinfang , et al. Relationship between snowLine change and climate change in the middle of Qilian Mountains during 2000-2012. Mountain Research, 2015,33(6):683-689. |
[ 赵军, 黄永生, 师银芳 , 等. 2000—2012年祁连山中段雪线与气候变化关系. 山地学报, 2015,33(6):683-689.] |
[1] | WU Yijin,ZHAO Xingshuang,XI Yue,LIU Hui,LI Chang. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006-2016 [J]. Acta Geographica Sinica, 2019, 74(7): 1438-1449. |
[2] | FENG Zhangxian,WANG Shijun,JIN Shanhe,YANG Jun. Effects of urban morphology and wind conditions on land surface temperature in Changchun [J]. Acta Geographica Sinica, 2019, 74(5): 902-911. |
[3] | Zhi QIAO, Ningyu HUANG, Xinliang XU, Zongyao SUN, Chen WU, Jun YANG. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017 [J]. Acta Geographica Sinica, 2019, 74(3): 475-489. |
[4] | QI Miaomiao,YAO Xiaojun,LI Xiaofeng,AN Lina,GONG Peng,GAO Yongpeng,LIU Juan. Spatial-temporal characteristics of ice phenology of Qinghai Lake from 2000 to 2016 [J]. Acta Geographica Sinica, 2018, 73(5): 932-944. |
[5] | YE Hong,ZHANG Tingbin,YI Guihua,LI Jingji,BIE Xiaojuan,LIU Dong,LUO Linling. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014 [J]. Acta Geographica Sinica, 2018, 73(11): 2117-2134. |
[6] | Baozhong HE, Jianli DING, Zhe ZHANG, Ghulam Abduwasit. Experimental analysis of spatial and temporal dynamics of fractional vegetation cover in Xinjiang [J]. Acta Geographica Sinica, 2016, 71(11): 1948-1966. |
[7] | Yuehong LONG, Jianxin QIN, Xinguang HE, Zhun YANG. Wavelet multi-resolution analysis of vegetation dynamic change in Dongting Lake Basin [J]. Acta Geographica Sinica, 2015, 70(9): 1491-1502. |
[8] | Xiaojun YAO, Long LI, Jun ZHAO, Meiping SUN, Jing LI, Peng GONG, Lina AN. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011 [J]. Acta Geographica Sinica, 2015, 70(7): 1114-1124. |
[9] | YAO Yonghui, ZHANG Baiping. MODIS-based estimation of air temperature and heating-up effect of the Tibetan Plateau [J]. Acta Geographica Sinica, 2013, 68(1): 95-107. |
[10] | YAO Yonghui, ZHANG Baiping, HAN Fang. MODIS-based Air Temperature Estimation in the Hengduan Mountains and Its Spatio-temporal Analysis [J]. Acta Geographica Sinica, 2011, 66(7): 917-927. |
[11] | XU Yongming, LIU Yonghong, WEI Ming, LU Jingjing. Land Cover Classification of the Yangtze River Delta Using MODIS Data [J]. Acta Geographica Sinica, 2007, 62(6): 640-648. |
[12] | SUN Zhigang, WANG Qinxue, OUYANG Zhu, WATANABE Masataka. Validation of the Feasibility of MOD16 Algorithm for Estimating Crop Field Vapor Flux in North China Plain [J]. Acta Geographica Sinica, 2004, 59(1): 49-55. |
[13] | LIU Ronggao, LIU Jiyuan, ZHUANG Dafang. Estimation of Land Photosynthetically Active Radiation in Clear Sky Using MODIS [J]. Acta Geographica Sinica, 2004, 59(1): 64-73. |
[14] | WANG Qinxue, WATANABE Masataka, HAYASHI Seiji, MURAKAMI Shogo, OUYANG Zhu, LI Yan, LI Yingnian, WANG Kelin. Monitoring and Simulation of Water, Heat and CO2 Fluxes in Various Terrestrial Ecosystems [J]. Acta Geographica Sinica, 2004, 59(1): 13-24. |