Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (2): 332-347.doi: 10.11821/dlxb202002009
• Agriculture and Rural Development • Previous Articles Next Articles
MA Enpu1,2, CAI Jianming1(), LIN Jing1, GUO Hua3, HAN Yan1,2, LIAO Liuwen1,2
Received:
2018-05-28
Revised:
2019-12-02
Online:
2020-02-25
Published:
2020-04-25
Contact:
CAI Jianming
E-mail:caijm@igsnrr.ac.cn
Supported by:
MA Enpu, CAI Jianming, LIN Jing, GUO Hua, HAN Yan, LIAO Liuwen. Spatio-temporal evolution of global food security pattern and its influencing factors in 2000-2014[J].Acta Geographica Sinica, 2020, 75(2): 332-347.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Index system and method for evaluation of food security
一级指标 | 二级指标 | 三级指标 | 指标向性 | 测量方法 |
---|---|---|---|---|
粮食安全 指数 | 粮食供给 | X1:人均粮食产量(kg/人) | +① | X1=粮食总产量/总人口 |
X2:人均蛋白质供应量(g/人·日) | + | X2=食物蛋白供应量/(总人口×当年天数) | ||
X3:人均动物源蛋白供应量(g/人·日) | + | X3=动物源蛋白供应量/(总人口×当年天数) | ||
X4:膳食能量供应充足率(%) | + | X4=每日膳食能量供应大于2320千卡②的 人口数/总人口数 | ||
食物获取 | X5:粮食短缺程度(kcal/人·日) | - | X5=2320-营养不良人群的每日人均膳食 能量摄入 | |
X6:人均国内生产总值 (2011年美元定值) | + | X6=按购买力平价换算的国内生产总值/总 人口 | ||
食物利用 | X7:5岁以下矮小儿童占比(%) | - | X7=5岁以下矮小儿童数/5岁以下儿童总数 | |
X8:5岁以下受浪费影响的儿童占比(%) | - | X8=5岁以下受浪费影响的儿童数/5岁以下 儿童总数 | ||
X9:获得洁净用水的人口占比(%) | + | X9=获得洁净用水的人口数/总人口 | ||
经济与政治稳定性 | X10:人均粮食产量变异性 | - | X10=人均粮食产量的标准差/人均粮食产量 的平均值 | |
X11:人均粮食供给变异性(kcal/人·日) | - | X11=人均粮食供给的标准差 | ||
X12:政治稳定与无暴力程度 | + | X12来自世界银行开发的世界治理指标 (WGI)③ |
Tab. 2
Methods of measuring factors affecting food security and data sources
影响因素 | 测量方法与数据来源 | 数据来源网址 |
---|---|---|
Z1:人均农业用地(hm2/人) | Z1=农业用地面积/总人口 | |
Z2:人均可再生水资源量 (m3/人) | Z2=可再生水资源量/总人口 | 可再生水资源量数据来自ChartsBin: |
Z3:年降水量(mm) | Z3来自东安格利亚大学气候研究中心 | |
Z4:年平均气温(℃) | Z4来自东安格利亚大学气候研究中心 | |
Z5:水土协调度 | Z5=可再生水资源量/农业用地面积 | 可再生水资源量数据来自ChartsBin: |
Z6:地均化肥施用量(kg/hm2) | Z6=农用化肥施用量/农业用地面积 | |
Z7:CO2排放量(kt) | Z7来自世界资源研究所(WRI)的“国家温室气体排放数据集”,该数据集由WRI发布,整合了美国能源部橡树岭国家实验室、FAO、国际能源署、世界银行和美国环境保护署等机构的数据 | |
Z8:人均国内生产总值 (2011年美元定值) | Z8=按2011年不变价换算的国内生产总值/总人口 | |
Z9:获得洁净用水的人口占比(%) | Z9=获得洁净用水的人口数/总人口 | |
Z10:政治稳定与无暴力程度 | Z10来自世界银行开发的世界治理指标(WGI) |
Tab. 5
Moran 's I, z score and P value of the food security index in 2000-2014
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moran's I | 0.22 | 0.22 | 0.22 | 0.23 | 0.24 | 0.25 | 0.28 | 0.27 | 0.28 | 0.26 | 0.29 | 0.25 | 0.27 | 0.24 | 0.27 |
z得分 | 14.00 | 13.84 | 13.71 | 14.40 | 15.14 | 15.39 | 17.12 | 16.51 | 17.69 | 16.44 | 18.27 | 15.44 | 16.68 | 15.04 | 17.04 |
P值 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tab. 6
Multiple nonlinear regression equations by years
年份 | 多元非线性回归方程 |
---|---|
2002 | FSI = 0.30+0.27Z43-0.41Z42+0.12Z4-1.20Z82+1.52Z8+1.85Z93-2.83Z92+1.35Z9+0.20Z102+0.02Z10 |
2003 | FSI = 0.31-0.06Z4-1.16Z82+1.47Z8+2.04Z93-2.98Z92+1.31Z9+0.19Z102+0.05Z10 |
2004 | FSI = 0.28+0.03Z42-0.09Z4+0.25Z83-1.42Z82+1.47Z8+2.19Z93-3.32Z92+1.56Z9+0.11Z103+0.01Z102+0.12Z10 |
2005 | FSI = -0.06-0.04Z4-1.01Z82+1.26Z8+3.38Z93-5.54Z92+2.91Z9+0.20Z102+0.27Z10 |
2006 | FSI = 0.34-0.13Z33+0.18Z32-0.05Z3-0.11Z4-1.18Z82+1.53Z8+2.65Z93-3.95Z92+1.7Z9+0.26Z103-0.17Z102+0.13Z10 |
2007 | FSI = 0.39-0.09Z4-0.35Z63+0.49Z62-0.15Z6-0.96Z82+1.28Z8+2.40Z93-3.51Z92+1.50Z9+0.22Z102-0.01Z10 |
2008 | FSI = 0.54-0.14Z4-1.22Z82+1.61Z8+0.30Z92-0.13Z9+0.21Z103-0.08Z102+0.11Z10 |
2009 | FSI = 0.39+0.12Z33-0.17Z32+0.06Z3-0.11Z4-0.14Z63+0.20Z62-0.08Z6-1.14Z82+1.47Z8+2.13Z93-3.26Z92+1.46Z9 +0.26Z103-0.11Z102+0.10Z10 |
2010 | FSI = 0.38+0.02Z42-0.12Z4+0.82Z63-1.07Z62+0.26Z6-1.18Z82+1.52Z8+2.47Z93-3.79Z92+1.69Z9+0.24Z103-0.14Z102+0.10Z10 |
2011 | FSI = -0.02-0.05Z4-3.32Z63+3.91Z62-0.61Z6-1.13Z82+1.45Z8+3.10Z93-5.10Z92+2.62Z9+0.45Z103-0.56Z102+0.47Z10 |
2012 | FSI = 0.35-0.06Z4-0.06Z63+0.07Z62-0.01Z6-1.03Z82+1.39Z8+1.96Z93-3.01Z92+1.34Z9+0.33Z103-0.27Z102+0.23Z10 |
2013 | FSI = 0.46-0.04Z4+0.32Z83-0.77Z82+0.63Z8+1.69Z93-2.21Z92+0.68Z9+0.29Z103-0.30Z102+0.24Z10 |
2014 | FSI = 0.49-0.04Z4+0.97Z83-1.90Z82+1.24Z8+1.33Z93-1.70Z92+0.49Z9+0.29Z102-0.09Z10 |
Tab. 7
Comparison of regression test between multiple linear and nonlinear regression equations
方程组类型 | 检验项 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
多元线性回归方程组 | R2 | 0.78 | 0.79 | 0.78 | 0.79 | 0.83 | 0.83 | 0.82 | 0.83 | 0.83 | 0.86 | 0.86 | 0.69 | 0.72 |
F | 114.45 | 118.01 | 110.6 | 117.77 | 124.08 | 121.3 | 147.35 | 102.51 | 124.83 | 153.29 | 152.71 | 70.32 | 80.87 | |
非线性回归方程组 | R2 | 0.83 | 0.83 | 0.82 | 0.82 | 0.88 | 0.84 | 0.85 | 0.86 | 0.86 | 0.85 | 0.87 | 0.72 | 0.77 |
F | 160.09 | 157.89 | 141.2 | 146.46 | 185.76 | 129.99 | 186.05 | 128.65 | 160.09 | 147.59 | 162.64 | 81.11 | 106.88 |
Tab. 8
Influence coefficient of each factor
年份 | 年降水量 | 年平均气温 | 地均化肥施用量 | 人均国内生产总值 | 获得洁净用水 的人口比重 | 政治稳定与 无暴力程度 |
---|---|---|---|---|---|---|
2002 | - | -0.0216 | - | 0.3192 | 0.3720 | 0.2262 |
2003 | - | -0.0570 | - | 0.3190 | 0.3780 | 0.243 |
2004 | - | -0.0682 | - | 0.2970 | 0.4366 | 0.2436 |
2005 | - | -0.0354 | - | 0.2538 | 0.7518 | 0.4713 |
2006 | -0.0104 | -0.1104 | - | 0.3472 | 0.3978 | 0.2200 |
2007 | - | -0.0924 | -0.0087 | 0.3180 | 0.3885 | 0.2128 |
2008 | - | -0.1380 | - | 0.3840 | 0.1689 | 0.2324 |
2009 | 0.0048 | -0.1056 | -0.0066 | 0.3245 | 0.3276 | 0.2520 |
2010 | - | -0.1005 | 0.0120 | 0.3360 | 0.3630 | 0.1955 |
2011 | - | -0.1000 | -0.6400 | 0.8200 | 0.6100 | 0.3600 |
2012 | - | -0.0560 | -0.00029 | 0.3540 | 0.2886 | 0.2871 |
2013 | - | -0.0380 | - | 0.1850 | 0.1610 | 0.2379 |
2014 | - | -0.0378 | - | 0.3120 | 0.1224 | 0.2035 |
[1] | Liu Yue, Zhao Wenwu, Zhang Xiao . Promoting the delivering on the Environmental Dimension of the 2030 Agenda for Sustainable Development: Summary of the Second Session of the United Nations Environment Assembly. Acta Ecologica Sinica, 2016,36(12):3843-3846. |
[ 刘月, 赵文武, 张骁 . 助推2030可持续发展议程环境目标落实: 第二届联合国环境大会会议简述. 生态学报, 2016,36(12):3843-3846.] | |
[2] | Future Earth Interim Secretariat . Future Earth initial design. Paris: International Council for Science, 2013. |
[3] | Liu Yuanxin, Zhao Wenwu . Future Earth: Research programme on global sustainability. Acta Ecologica Sinica, 2013,33(23):7610-7613. |
[ 刘源鑫, 赵文武 . 未来地球全球可持续性研究计划. 生态学报, 2013,33(23):7610-7613.] | |
[4] | Future Earth Interim Secretariat . Future Earth 2025 Vision. Paris: International Council for Science, 2014. |
[5] | Liu Yuanxin, Zhao Wenwu, Wang Jun . Coordinated response to global change for sustainable development: Future Earth 2025 Vision. Acta Ecologica Sinica, 2015,35(7):2414-2417. |
[ 刘源鑫, 赵文武, 王军 . 协同应对全球变化,促进可持续发展: “未来地球2025愿景”. 生态学报, 2015,35(7):2414-2417.] | |
[6] | Food and Agriculture Organization of the United Nations, United Nations Children's Fund, World Food Programme, et al. The State of Food Security and Nutrition in the World 2017: Enhancing Resilience and Promoting Peace and Food Security. Rome: Food and Agriculture Organization of the United Nations, 2017. |
[ 联合国粮食及农业组织, 联合国儿童基金会, 世界粮食计划署, 等. 2017年世界粮食安全和营养状况: 增强抵御能力,促进和平与粮食安全. 罗马: 粮农组织, 2017.] | |
[7] | Luo Xiaoling, Zhang Yu, Yang Huaidong . Definition of food security in China and its evaluation. Journal of Shandong Agricultural University, 2006,30(3):14-18. |
[ 罗孝玲, 张妤, 杨怀东 . 我国粮食安全的界定与评估. 山东农业大学学报, 2006,30(3):14-18.] | |
[8] | FAO. The State of Food Insecurity in the World 2001. Rome, Italy: Food and Agriculture Organization, 2002. |
[9] | Wu Wenbin, Tang Huajun, Yang Peng , et al. Model-based assessment of food security at a global scale. Acta Geographica Sinica, 2010,65(8):907-918. |
[ 吴文斌, 唐华俊, 杨鹏 , 等. 基于空间模型的全球粮食安全评价. 地理学报, 2010,65(8):907-918.] | |
[10] | An Yiming, Zhao Wenwu . Global climate change and food security: Review of the 2012 Planet under Pressure International Conference. Acta Ecologica Sinica, 2012,32(15):4940-4942. |
[ 安艺明, 赵文武 . 全球气候变化与粮食安全: 2012年Planet Under Pressure国际会议述评. 生态学报, 2012,32(15):4940-4942.] | |
[11] | Stephens E C, Jones A D, Parsons D . Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agricultural Systems, 2017(1):1-6. |
[12] | Maxwell S, Smith M . Household food security: A conceptual review//Maxwell S et al. Household Food Security: Concepts, Indicators, Measurements: A Technical Review. UNICEF and IFAD, 1992: 1-6. |
[13] | Jiang Li, Xu Feibiao . Review on climate change and food security. International Information, 2011(5):37-42. |
[ 蒋丽, 徐飞彪 . 气候变化与粮食安全问题研究综述. 国际资料信息, 2011(5):37-42.] | |
[14] | John B, Birgit M, Stacey R . A food demand framework for international food security assessment. Journal of Policy Modeling, 2017,39:827-842. |
[15] | Zhu Xiaoxi, Fang Xiuqi, Gao Yong . Assessment of the food security in China based on system science. Chinese Journal of Agricultural Resources and Regional Planning, 2012,33(6):11-17. |
[ 朱晓禧, 方修琦, 高勇 . 基于系统科学的中国粮食安全评价研究. 中国农业资源与区划, 2012,33(6):11-17.] | |
[16] | Andrea B, Mauro E D, Carlo C . National food security assessment through the analysis of food consumption data from Household Consumption and Expenditure Surveys: The case of Brazil's Pesquisa de Orçamento Familiares 2008/09. Food Policy, 2017,72:20-26. |
[17] | Rahib H A, Kaan U, Umit I , et al. Assessment of food security risk level using type 2 fuzzy system. Procedia Computer Science, 2016,102:547-554. |
[18] | Thomas W H, Uris L C B . Attaining food and environmental security in an era of globalization. Global Environmental Change, 2016,41:195-205. |
[19] | Yin Peihong, Fang Xiuqi . Assessment on vulnerable regions of food security in China. Acta Geographica Sinica, 2008,63(10):1064-1072. |
[ 殷培红, 方修琦 . 中国粮食安全脆弱区的识别及空间分异特征. 地理学报, 2008,63(10):1064-1072.] | |
[20] | Li Zhongpei, Li Decheng, Zhang Taolin . Threat and strategies of soil degradation to food security. Bulletin of Soil and Water Conservation, 2001,21(4):65-69. |
[ 李忠佩, 李德成, 张桃林 . 土地退化对全球粮食安全的威胁及防治对策. 水土保持通报, 2001,21(4):65-69.] | |
[21] | Yan Huimin, Liu Jiyuan, Cao Mingkui . Spatial pattern and topographic control of China's agricultural productivity variability. Acta Geographica Sinica, 2007,62(2):171-180. |
[ 闫慧敏, 刘纪远, 曹明奎 . 中国农田生产力变化的空间格局及地形控制作用. 地理学报, 2007,62(2):171-180.] | |
[22] | Kang Shaozhong . Towards water and food security in China. Chinese Journal of Eco-Agriculture, 2014,22(8):880-885. |
[ 康绍忠 . 水安全与粮食安全. 中国生态农业学报, 2014,22(8):880-885.] | |
[23] | Jia Huicong, Wang Jing'ai, Pan Donghua , et al. Maize drought disaster risk assessment based on EPIC Model: A case study of maize region in northern China. Acta Geographica Sinica, 2011,66(5):643-652. |
[ 贾慧聪, 王静爱, 潘东华 , 等. 基于EPIC模型的黄淮海夏玉米旱灾风险评价. 地理学报, 2011,66(5):643-652.] | |
[24] | IPCC Working Group III. Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios Geneva,Switzerland: Intergovernmental Panel on Climate Change, 2007. |
[25] | Bach H , et al. Cooperation for water, energy, and food security in transboundary basins under changing climate. Express Water Resources & Hydropower Information, 2016,37(8):1-7. |
[ 巴赫 , 等. 全球气候变化背景下跨界流域水、能源和粮食安全的合作. 水利水电快报, 2016,37(8):1-7.] | |
[26] | Karabulut A A, Crenna E, Sala S , et al. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. Journal of Cleaner Production, 2018,172:3874-3889. |
[27] | McCarl B A, Fernandez M A, Jones J P H , et al. Climate change agriculture and food security: Consequences and possible decisions. Current History, 2013,112(750):33-37. |
[1] | Shuai MA, Yu SHENG, Wei CAO, Jichun WU, Xiaoying HU, Shengting WANG. Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River [J]. Acta Geographica Sinica, 2017, 72(9): 1621-1633. |
[2] | WANG Genxu, LIU Jinqi, CHEN Ling. Comparison of Spatial Diversity of Land Use Changes and the Inpacts on Two Typical Areas of Heihe River Basin [J]. Acta Geographica Sinica, 2006, 61(4): 339-348. |