Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (1): 25-40.doi: 10.11821/dlxb202001003
• Climate Change • Previous Articles Next Articles
WANG Fang1, ZHANG Jintao1,2
Received:
2019-05-21
Revised:
2019-12-20
Online:
2020-01-25
Published:
2020-03-25
Supported by:
WANG Fang, ZHANG Jintao. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement[J].Acta Geographica Sinica, 2020, 75(1): 25-40.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Basic information of 33 GCMs in CMIP5
模式名称 | 机构名称 | 国家 | 水平分辨率 (全球网格数) |
---|---|---|---|
ACCESS1-0 | 澳大利亚联邦科学与工业研究组织/气象局 | 澳大利亚 | 192×145 |
ACCESS1-3 | 192×145 | ||
BCC-CSM1-1 | 中国气象局国家气候中心 | 中国 | 128×64 |
BCC-CSM1-1-m | 320×160 | ||
BNU-ESM | 北京师范大学 | 中国 | 128×64 |
CanESM2 | 加拿大气候模拟与分析中心 | 加拿大 | 128×64 |
CCSM4 | 美国国家大气研究中心 | 美国 | 288×192 |
CESM1-BGC | 288×192 | ||
CMCC-CESM | 意大利地中海气候中心 | 意大利 | 96×96 |
CMCC-CM | 480×240 | ||
CMCC-CMS | 192×96 | ||
CNRM-CM5 | 法国气象研究中心 | 法国 | 256×128 |
CSIRO-Mk3-6-0 | 澳大利亚联邦科学与工业研究组织/昆士兰洲气候变化研究中心 | 澳大利亚 | 192×96 |
EC-EARTH | EC-EARTH研究联合体 | 荷兰/冰岛 | 320×160 |
FGOALS-g2 | 中国科学院大气物理研究所 | 中国 | 128×60 |
FGOALS-s2 | 128×108 | ||
GFDL-CM3 | 美国地球物理流体动力学实验室 | 美国 | 144×90 |
GFDL-ESM2G | 144×90 | ||
GFDL-ESM2M | 144×90 | ||
HadGEM2-CC | 英国哈德莱气象中心 | 英国 | 192×145 |
HadGEM2-ES | 192×145 | ||
INM-CM4 | 俄罗斯科学院计算数学研究所 | 俄罗斯 | 180×120 |
IPSL-CM5A-LR | 法国Pierre Simon物理学研究所 | 法国 | 96×96 |
IPSL-CM5A-MR | 144×143 | ||
IPSL-CM5B-LR | 96×96 | ||
MIROC5 | 日本海洋地球科学与技术局、大气海洋研究所和国家环境变化研究所 | 日本 | 256×128 |
MIROC-ESM | 128×64 | ||
MIROC-ESM-CHEM | 128×64 | ||
MPI-ESM-LR | 德国普朗克气象研究所 | 德国 | 192×96 |
MPI-ESM-MR | 192×96 | ||
MRI-CGCM3 | 日本气象研究所 | 日本 | 320×160 |
MRI-ESM1 | 320×160 | ||
NorESM1-M | 挪威气候中心 | 挪威 | 144×96 |
Tab. 3
Risk ratio of 5% extreme value for Rx5day and CDD in the five countries of Central Asia
极值指数 | 目标情景 | KAZ | UZB | TKM | KGZ | TJK |
---|---|---|---|---|---|---|
Rx5day | 1.5 ℃温升 | 1.68 | 1.87 | 1.77 | 1.59 | 1.75 |
2.0 ℃温升 | 2.09 | 1.94 | 1.81 | 1.96 | 2.02 | |
INDC | 2.96 | 2.13 | 2.27 | 2.59 | 2.74 | |
1.5 ℃温升 | 1.28 | 1.01 | 1.03 | 1.01 | 1.20 | |
CDD | 2.0 ℃温升 | 1.41 | 1.10 | 1.34 | 1.32 | 1.33 |
INDC | 1.33 | 1.27 | 1.61 | 1.64 | 1.48 |
[1] | UNFCCC. Adoption of the Paris Agreement: Proposal by the President. Geneva, 2015. |
[2] | UNFCCC. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions. Paris, 2015. |
[3] | Gupta S, Tirpak D, Burger N , et al. Policies, instruments, and co-operative arrangements//Metz O B, Bosch P, Dave R, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, USA: Cambridge University Press, 2007: 745-807. |
[4] | Li Donghuan, Zou Liwei, Zhou Tianjun . Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model. Advances in Earth Science, 2017,32(4):446-457. |
[ 李东欢, 邹立维, 周天军 . 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估. 地球科学进展, 2017,32(4):446-457.] | |
[5] | Hao Ying, Ma Jingjin, An Jingjin , et al. Projected changes in climate and river discharge in the Chaobai River Basin under 1.5 ℃ and 2.0 ℃ global warming. Climate Change Research, 2018,14(3):237-246. |
[ 郝莹, 马京津, 安晶晶 , 等. 全球1.5 ℃和2.0 ℃温升下潮白河流域气候和径流量变化预估. 气候变化研究进展, 2018,14(3):237-246.] | |
[6] | Schleussner C F, Lissner T K, Fischer E M , et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ℃ and 2 ℃. Earth System Dynamics, 2016,7(2):327-351. |
[7] | Mitchell D, Achutarao K, Allen M , et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geoscientific Model Development, 2017,10(2):571-583. |
[8] | Zhang W, Zhou T, Zou L , et al. Reduced exposure to extreme precipitation from 0.5 ℃ less warming in global land monsoon regions. Nature Communications, 2018,9(1):3153. |
[9] | Sanderson B M O'neill B C Tebaldi C . What would it take to achieve the Paris temperature targets? Geophysical Research Letters, 2016,43(13):7133-7142. |
[10] | Rogelj J, Den Elzen M, Höhne N , et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃. Nature, 2016,534:631-639. |
[11] | UNEP. The Emissions Gap Report. Nairobi, 2017. |
[12] | Fawcett A A, Iyer G C, Clarke L E , et al. Climate Policy. Can Paris pledges avert severe climate change? Science, 2015,350(6265):1168-1169. |
[13] | Lioubimtseva E, Cole R, Adams J M , et al. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 2005,62(2):285-308. |
[14] | Zhang M, Chen Y, Shen Y , et al. Tracking climate change in Central Asia through temperature and precipitation extremes. Journal of Geographical Sciences, 2019,29(1):3-28. |
[15] | Deng Haijun, Chen Yaning . The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia. Acta Geographica Sinica, 2018,73(7):1309-1323. |
[ 邓海军, 陈亚宁 . 中亚天山山区冰雪变化及其对区域水资源的影响. 地理学报, 2018,73(7):1309-1323.] | |
[16] | Li Xinwu, Zhang Li, Guo Huadong , et al. Space recognition of eco-environment global change response of arid and semi-arid region of the Silk Road Economic Belt. Bulletin of Chinese Academy of Sciences, 2016,31(5):559-566. |
[ 李新武, 张丽, 郭华东 , 等. “丝绸之路经济带”干旱—半干旱区生态环境全球变化响应的空间认知. 中国科学院院刊, 2016,31(5):559-566.] | |
[17] | Han Qifei, Lu Yan, Li Chaofan . Impact of climate change on grassland carbon cycling in Central Asia. Arid Land Geography, 2018,41(6):1351-1357. |
[ 韩其飞, 陆研, 李超凡 . 气候变化对中亚草地生态系统碳循环的影响研究. 干旱区地理, 2018,41(6):1351-1357.] | |
[18] | Chen Y, Li Z, Li W , et al. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China's Silk Road. Environmental Earth Sciences, 2016,75(10):881. |
[19] | Howard K W F, Howard K K . The new "Silk Road Economic Belt" as a threat to the sustainable management of Central Asia's transboundary water resources. Environmental Earth Sciences, 2016,75(11):976. |
[20] | Li P, Qian H, Zhou W . Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environmental Earth Sciences, 2017,76(3):105. |
[21] | IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, USA: Cambridge University Press, 2014. |
[22] | IPCC. Global Warming of 1.5 ℃. Cambridge, UK, and New York, USA: Cambridge University Press, 2018. |
[23] | UNFCCC. National Inventory Submissions, 2019. |
[24] | Wang F, Tokarska K B, Zhang J , et al. Climate warming in response to emission reductions consistent with the Paris Agreement. Advances in Meteorology, 2018,2018:1-9. |
[25] | Addressing Global Warming. https://climateactiontracker.org/global/temperatures/. |
[26] | Wang F, Ge Q, Chen D , et al. Global and regional climate responses to national-committed emission reductions under the Paris agreement. Geografiska Annaler: Series A, Physical Geography, 2018,100(3):240-253. |
[27] | Taylor K E, Stouffer R J, Meehl G A . An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2011,93(4):485-498. |
[28] | Reichler T, Kim J . How well do coupled models simulate today's climate? Bulletin of the American Meteorological Society, 2008,89(3):303-312. |
[29] | Pierce D W, Barnett T P, Santer B D , et al. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences, 2009,106(21):8441-8446. |
[30] | Ziese M, Rauthe-Schöch A, Becker A , et al. GPCC Full Data Daily Version. 2018 at 10°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data [DB/OL]. Doi: 10.5676/DWD_GPCC/FD_D_V2018_100. |
[31] | Robert V, Andreas G, Stefan S , et al. The European climate under a 2 ℃ global warming. Environmental Research Letters, 2014,9(3):034006. |
[32] | Huang J, Yu H, Dai A , et al. Drylands face potential threat under 2 ℃ global warming target. Nature Climate Change, 2017,7:417-422. |
[33] | Zhang X, Alexander L, Hegerl G C , et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2011,2(6):851-870. |
[34] | Dai A . Increasing drought under global warming in observations and models. Nature Climate Change, 2012,3:52-58. |
[35] | Prudhomme C, Giuntoli I, Robinson E L , et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences, 2014,111(9):3262-3267. |
[36] | Hirabayashi Y, Mahendran R, Koirala S , et al. Global flood risk under climate change. Nature Climate Change, 2013,3:816-821. |
[37] | Lavell A, Oppenheimer M, Diop C , et al. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience// Field C B, Barros V, Stocker T F, et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK, and New York, USA: Cambridge University Press, 2012: 25-64. |
[38] | Cox D R, Hinkley D V . Theoretical Statistics. London: Chapman and Hall, 1974: 511. |
[39] | Jones B, O'neill B C . Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environmental Research Letters, 2016,11(8):084003. |
[40] | Vuuren D P V, Edmonds J, Kainuma M , et al. The representative concentration pathways: An overview. Climatic Change, 2011,109(1-2):5-31. |
[41] | Hoegh-Guldberg O, Jacob D, Taylor M , et al. Impacts of 1.5 ℃ global warming on natural and human systems//Masson-Delmotte V, Zhai P, Pörtner H O, et al. Global warming of 1.5 ℃. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge, UK, and New York, USA: Cambridge University Press, 2018. |
[42] | Sanderson B M, Xu Y, Tebaldi C , et al. Community climate simulations to assess avoided impacts in 1.5 and 2 ℃ futures. Earth System Dynamics, 2017,8(3):827-847. |
[43] | Jiang D, Sui Y, Lang X . Timing and associated climate change of a 2 ℃ global warming. International Journal of Climatology, 2016,36(14):4512-4522. |