Acta Geographica Sinica ›› 2017, Vol. 72 ›› Issue (5): 830-849.doi: 10.11821/dlxb201705006
• Climate Change and Surface Processes • Previous Articles Next Articles
Wei SHUI1,2,3(), Zhichun CHEN1, Jieming DENG1, Yajing LI1, Qianfeng WANG1, Wulin WANG1, Yiping CHEN1
Received:
2016-07-26
Revised:
2017-01-25
Online:
2017-05-20
Published:
2017-05-20
Supported by:
Wei SHUI, Zhichun CHEN, Jieming DENG, Yajing LI, Qianfeng WANG, Wulin WANG, Yiping CHEN. Evaluation of urban high temperature vulnerability of coupling adaptability in Fuzhou, China[J].Acta Geographica Sinica, 2017, 72(5): 830-849.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Evaluation index system of urban high temperature vulnerability and index preprocessing
目标层 | 准则层 | 指标层 | 数据来源 | 指标预处理 | 指标变量类型 |
---|---|---|---|---|---|
高温 脆弱性 | 暴露性 | 温度[ | 遥感影像数据① | 亮温反演[ | 连续变量 |
人口密度[ | 第六次人口普查数据 | - | 连续变量 | ||
易损性 | 植被[ | 遥感影像数据① | 土壤调节植被指数提取植被 | 有序分类变量 | |
水体[ | 福州市水系图 | 缓冲区分析 | 有序分类变量 | ||
土地利用类型[ | 福州市中心城区 用地现状图 | 土地利用类型 重分类② | 有序分类变量 | ||
适应力 | 性别[21][ | 问卷调查数据 | 有序多分类Logistic回归 | 无序分类变量 | |
年龄[21][ | 连续分类变量 | ||||
住房建筑面积 | 连续分类变量 | ||||
家中空调数 | 连续分类变量 | ||||
家庭月收入[55]③ | 连续分类变量 | ||||
受教育程度[49]④ | 有序分类变量 | ||||
职业[ | 无序分类变量 | ||||
健康状况[49]⑤ | 有序分类变量 | ||||
消暑食品(药品)预备程度⑥ | 有序分类变量 | ||||
外出纳凉消暑的频率⑥ | 有序分类变量 | ||||
主动获取高温信息的频率⑥ | 有序分类变量 | ||||
对中暑医疗知识 的熟悉程度⑦ | 有序分类变量 | ||||
政府缓解高温力度⑦ | 有序分类变量 | ||||
就近获得医疗救助的容易程度[50]⑦ | 有序分类变量 |
Tab. 2
Factors influencing Fuzhou residents’ adaptability to high temperature based on logistic regression model
影响因素 | 参数估计 | 标准误差 | Wald | df | 显著性 | 95%置信区间 | |
---|---|---|---|---|---|---|---|
下限 | 上限 | ||||||
年龄(x2): | 0.032* | 0.013 | 6.356 | 1 | 0.012 | -0.007 | -0.056 |
住房建筑面积(x3): | -0.006* | 0.003 | 5.062 | 1 | 0.024 | -0.011 | -0.001 |
健康情况(x4): | |||||||
不好 | -2.963* | 1.323 | 5.012 | 1 | 0.025 | -5.557 | -0.369 |
一般 | -2.321** | 0.582 | 15.899 | 1 | 0.000 | -3.462 | -1.180 |
良好 | -1.426** | 0.540 | 6.979 | 1 | 0.008 | -2.483 | -0.368 |
参照组:很佳 | 0a | - | - | 0 | - | - | - |
外出纳凉消暑频率(x10): | |||||||
从不 | -2.202* | 1.024 | 4.629 | 1 | 0.031 | -4.208 | -0.196 |
偶尔 | -2.134* | 1.032 | 4.273 | 1 | 0.039 | -4.157 | -0.111 |
较少 | -2.273* | 1.027 | 4.901 | 1 | 0.027 | -4.286 | -0.261 |
参照组:总是 | 0a | - | - | 0 | - | - | - |
政府缓解高温力度(x13): | |||||||
较小 | -1.255* | 0.616 | 4.150 | 1 | 0.042 | -2.462 | -0.048 |
参照组:很大 | 0a | - | - | 0 | - | - | - |
就近获得医疗救助容易程度(x14): | |||||||
很不容易 | -2.644** | 0.710 | 13.874 | 1 | 0.000 | -4.035 | -1.253 |
不容易 | -1.362** | 0.520 | 6.866 | 1 | 0.009 | -2.381 | -0.343 |
一般 | -1.260** | 0.467 | 7.260 | 1 | 0.007 | -2.176 | -0.343 |
参照组:很容易 | 0a | - | - | 0 | - | - | - |
Tab. 4
Area statistics of Fuzhou city on high temperature exposure of each subarea (km2, %)
等级 | 鼓楼区 | 台江区 | 晋安区 | 仓山区 | 中心区 | 外围区 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | ||||||
低 | 2.00 | 5.33 | 1.09 | 6.02 | 11.87 | 16.89 | 11.19 | 13.14 | 0.91 | 2.12 | 25.16 | 14.98 | |||||
次低 | 7.04 | 18.81 | 1.19 | 6.57 | 21.69 | 30.85 | 26.67 | 31.32 | 1.66 | 3.85 | 54.92 | 32.71 | |||||
中 | 12.12 | 32.39 | 2.89 | 15.94 | 21.20 | 30.15 | 33.69 | 39.56 | 4.94 | 11.45 | 65.05 | 38.74 | |||||
次高 | 9.06 | 24.22 | 4.35 | 23.98 | 13.20 | 18.77 | 13.20 | 15.50 | 17.77 | 41.18 | 22.02 | 13.12 | |||||
高 | 7.20 | 19.25 | 8.62 | 47.49 | 2.35 | 3.34 | 0.41 | 0.48 | 17.87 | 41.40 | 0.76 | 0.45 | |||||
合计 | 37.43 | 100.00 | 18.16 | 100.00 | 70.32 | 100.00 | 85.16 | 100.00 | 43.16 | 100.00 | 167.91 | 100.00 |
Tab. 5
Area statistics of Fuzhou city on high temperature susceptibility of each subarea (km2, %)
等级 | 鼓楼区 | 台江区 | 晋安区 | 仓山区 | 中心区 | 外围区 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | ||||||
低 | 13.01 | 34.77 | 3.77 | 20.74 | 23.98 | 34.11 | 28.86 | 33.89 | 7.51 | 17.40 | 62.10 | 36.98 | |||||
次低 | 0.71 | 1.89 | 0.43 | 2.38 | 0.97 | 1.39 | 4.92 | 5.78 | 0.92 | 2.12 | 6.12 | 3.64 | |||||
中 | 7.34 | 19.62 | 3.07 | 16.93 | 13.56 | 19.29 | 13.48 | 15.83 | 7.82 | 18.12 | 29.64 | 17.65 | |||||
次高 | 3.92 | 10.47 | 3.06 | 16.83 | 10.16 | 14.45 | 13.63 | 16.00 | 5.04 | 11.68 | 25.74 | 15.33 | |||||
高 | 12.45 | 33.25 | 7.83 | 43.12 | 21.63 | 30.77 | 24.27 | 28.51 | 21.87 | 50.68 | 44.31 | 26.39 | |||||
合计 | 37.43 | 100.00 | 18.16 | 100.00 | 70.32 | 100.00 | 85.16 | 100.00 | 43.16 | 100.00 | 167.91 | 100.00 |
Tab. 6
Area statistics of Fuzhou city on high temperature adaptability of each subarea (km2, %)
等级 | 鼓楼区 | 台江区 | 晋安区 | 仓山区 | 中心区 | 外围区 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | ||||||
低 | 0 | 0 | 0 | 0 | 3.50 | 4.98 | 58.34 | 68.51 | 0.68 | 1.58 | 61.16 | 36.49 | |||||
次低 | 17.14 | 45.79 | 3.03 | 16.70 | 40.53 | 57.64 | 17.36 | 20.38 | 4.41 | 10.22 | 73.64 | 43.94 | |||||
中 | 9.49 | 25.34 | 3.17 | 17.48 | 15.92 | 22.63 | 4.23 | 4.97 | 7.52 | 17.42 | 25.29 | 15.09 | |||||
次高 | 6.58 | 17.58 | 3.79 | 20.89 | 8.46 | 12.04 | 4.02 | 4.72 | 15.40 | 35.69 | 7.45 | 4.45 | |||||
高 | 4.23 | 11.30 | 8.16 | 44.93 | 1.90 | 2.70 | 1.22 | 1.43 | 15.15 | 35.10 | 0.36 | 0.21 | |||||
合计 | 37.43 | 100.00 | 18.16 | 100.00 | 70.32 | 100.00 | 85.16 | 100.00 | 43.16 | 100.00 | 167.91 | 100.00 |
Tab. 7
Area statistics of Fuzhou city on high temperature vulnerability of each subarea (km2 , %)
等级 | 鼓楼区 | 台江区 | 晋安区 | 仓山区 | 中心区 | 外围区 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | 面积 | 占比 | ||||||
低 | 2.40 | 6.42 | 2.71 | 14.94 | 15.80 | 22.47 | 4.35 | 5.11 | 4.54 | 10.51 | 20.73 | 12.37 | |||||
次低 | 11.50 | 30.73 | 2.90 | 15.97 | 15.59 | 22.18 | 17.82 | 20.93 | 6.58 | 15.24 | 41.24 | 24.61 | |||||
中 | 10.31 | 27.55 | 4.83 | 26.59 | 16.18 | 23.01 | 20.68 | 24.28 | 11.77 | 27.27 | 40.23 | 24.00 | |||||
次高 | 10.41 | 27.83 | 5.94 | 32.71 | 15.62 | 22.22 | 23.68 | 27.80 | 14.76 | 34.21 | 40.89 | 24.40 | |||||
高 | 2.76 | 7.39 | 1.78 | 9.79 | 6.93 | 9.86 | 18.55 | 21.79 | 5.51 | 12.77 | 24.52 | 14.63 | |||||
合计 | 37.43 | 100.00 | 18.16 | 100.00 | 70.32 | 100.00 | 85.16 | 100.00 | 43.16 | 100.00 | 167.91 | 100.00 |
[1] | Liu Jifeng, Ding Yuguo, Jiang Zhihong.The influence of aggravated global warming on the probability of extreme climatic event. Plateau Meteorology, 2007, 26(4): 837-842. |
[刘吉峰, 丁裕国, 江志红. 全球变暖加剧对极端气候概率影响的初步探讨. 高原气象, 2007, 26(4): 837-842.] | |
[2] |
Easterling D R, Meehl G A, Parmesan C, et al.Climate extremes: observations, modeling, and impacts. Science, 2000, 289(5487): 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103 |
[3] |
Shen Yongping, Wang Guoya.Key findings and assessment results of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076.
doi: 10.7522/j.issn.1000-0240.2013.0120 |
[沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013, 35(5): 1068-1076.]
doi: 10.7522/j.issn.1000-0240.2013.0120 |
|
[4] |
Poumadere M, Mays C, Le Mer S, et al.The 2003 heat wave in France: Dangerous climate change here and now. Risk Analysis, 2005, 25(6): 1483-1494.
doi: 10.1111/j.1539-6924.2005.00694.x pmid: 16506977 |
[5] |
Tian Z X, Li S S, Zhang J L, et al.The characteristic of heat wave effects on coronary heart disease mortality in Beijing,China: A time series study. Plos One, 2013, 8(9): 1-9.
doi: 10.1371/journal.pone.0077321 pmid: 3786924 |
[6] | Hansen A, Bi P, Ryan P, et al.The effect of heat waves on hospital admissions for renal disease in a temperate city of Australia. International Journal of Epidemiology, 2008, 37(6): 1359-1365. |
[7] | Xu Xiazhen, Zheng Youfei, Yin Jifu, et al .Characteristics of high temperature and heat wave in Nanjing City and their impacts on human health. Chinese Journal of Ecology, 2011, 30(12): 2815-2820. |
[许遐祯, 郑有飞, 尹继福, 等. 南京市高温热浪特征及其对人体健康的影响. 生态学杂志, 2011, 30(12): 2815-2820.] | |
[8] |
Mazdiyasni O, AghaKouchak A. Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences, 2015, 112(37): 11484-11489.
doi: 10.1073/pnas.1422945112 pmid: 26324927 |
[9] |
Yang Xuan, Tang Xu, Chen Baode, et al.Impacts of heat stress on wheat yield due to climatic warming in China. Progress in Geography, 2013, 32(12): 1771-1779.
doi: 10.11820/dlkxjz.2013.12.006 |
[杨绚, 汤绪, 陈葆德, 等. 气候变暖背景下高温胁迫对中国小麦产量的影响. 地理科学进展, 2013, 32(12): 1771-1779.]
doi: 10.11820/dlkxjz.2013.12.006 |
|
[10] |
Zaitchik B, Macalady A, Bonneau L, et al.Europe's 2003 heat wave: A satellite view of impacts and land-atmosphere feedbacks. International Journal of Climatology, 2006, 26(6): 743-769.
doi: 10.1002/joc.1280 |
[11] |
Peng Jian, Liu Yanxu, Pan Yajing, et al.Study on the correlation between ecological risk due to natural disaster and landscape pattern-process: Review and prospect. Advances in Earth Science, 2014, 29(10): 1186-1196.
doi: 10.11867/j.issn.1001-8166.2014.10.1186 |
[彭建, 刘焱序,潘雅婧, 等. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望. 地球科学进展, 2014, 29(10): 1186-1196.]
doi: 10.11867/j.issn.1001-8166.2014.10.1186 |
|
[12] |
Hu Haibo, Xiong Yajun.A research summary of extreme heat wave. Advances in Meteorological Science and Technology, 2015, 5(1): 18-22.
doi: 10.3969/j.issn.2095-1973.2015.01.002 |
[扈海波, 熊亚军. 城市极端高温灾害研究综述. 气象科技进展, 2015, 5(1): 18-22.]
doi: 10.3969/j.issn.2095-1973.2015.01.002 |
|
[13] |
Dong Siyan, Xu Ying, Zhou Botao, et al.Predicted risk of extreme heat in China based on CMIP5 models. Advances in Climate Change Research, 2014, 10(25): 365-369.
doi: 10.3969/j.issn.1673-1719.2014.05.008 |
[董思言, 徐影, 周波涛, 等. 基于CMIP5模式的中国地区未来高温灾害风险预估. 气候变化研究进展, 2014, 10(25): 365-369.]
doi: 10.3969/j.issn.1673-1719.2014.05.008 |
|
[14] | He Shanfeng, Dai Erfu, Ge Quansheng, et al.Pre-estimation of spatiotemporal pattern of extreme heat hazard in China. Journal of Natural Disasters, 2010, 19(2): 91-97. |
[贺山峰, 戴尔阜, 葛全胜, 等. 中国高温致灾危险性时空格局预估. 自然灾害学报, 2010, 19(2): 91-97.] | |
[15] |
Chen Ping, Chen Xiaoling.Summary on research of coupled human-environment system vulnerability under global environmental change. Progress in Geography, 2010, 29(4): 454-462.
doi: 10.11820/dlkxjz.2010.04.010 |
[陈萍, 陈晓玲. 全球环境变化下人-环境耦合系统的脆弱性研究综述. 地理科学进展, 2010, 29(4): 454-462.]
doi: 10.11820/dlkxjz.2010.04.010 |
|
[16] |
Li He, Zhang Pingyu.Research progress and prospective applications of vulnerability approach under global change. Progress in Geography, 2011, 30(7): 920-929.
doi: 10.11820/dlkxjz.2011.07.019 |
[李鹤, 张平宇. 全球变化背景下脆弱性研究进展与应用展望. 地理科学进展, 2011, 30(7): 920-929.]
doi: 10.11820/dlkxjz.2011.07.019 |
|
[17] |
Xie Pan, Wang Yanglin, Liu Yanxu, et al.Incorporating social vulnerability to assess population health risk due to heat stress in China. Acta Geographica Sinica, 2015, 70(7): 1041-1051.
doi: 10.11821/dlxb201507002 |
[谢盼, 王仰麟, 刘焱序, 等. 基于社会脆弱性的中国高温灾害人群健康风险评价. 地理学报, 2015, 70(7): 1041-1051.]
doi: 10.11821/dlxb201507002 |
|
[18] | Inc E.Understanding the Changing Planet:Strategic Directions for the Geographical Sciences.National Academies Press, 2010: 41-49. |
[19] | National Research Council of the National Academy of Sciences. Understanding the Changing Planet: Strategic Directions for the Geographical Science. Beijing: Science Press, 2011: 46-55. |
[美国国家科学院国家研究理事会.理解正在变化的星球: 地理科学的战略方向. 北京: 科学出版社, 2011: 46-55.] | |
[20] |
Gallopín G C.Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 2006, 16(3): 293-303.
doi: 10.1016/j.gloenvcha.2006.02.004 |
[21] |
Turner II B L, Matson P A, Mccarthy J J, et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8080-8085.
doi: 10.1073/pnas.1231334100 pmid: 12815106 |
[22] |
Reidsma P, Ewert F, Lansink A O, et al.Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy, 2010, 32(1): 91-102.
doi: 10.1016/j.eja.2009.06.003 |
[23] | World Meteorological Organization (WMO). Public Weather Service Programme: What's Future? WMO Bulletin, 2013, 62(2): 16-19. |
[24] | World Health Organization: Protecting Health in an Environment Challenged by Climate Change: European Regional Framework for Action. Copenhagen, WHO, 2010. |
[25] |
Chen Guoqi, Feng Li, Tian Xingshan.Influences of different weed control practices on hot-season vegetable-field weed communities in South China. Acta Ecologica Sinica, 2015, 35(22): 7444-7453.
doi: 10.5846/stxb201404140722 |
[陈国奇, 冯莉, 田兴山. 不同控草措施对高温季节华南地区蔬菜田杂草群落的影响. 生态学报, 2015, 35(22): 7444-7453.]
doi: 10.5846/stxb201404140722 |
|
[26] |
Harlan S L, Brazel A J, Prashad L, et al.Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine, 2006, 63(11): 2847-2863.
doi: 10.1016/j.socscimed.2006.07.030 pmid: 16996668 |
[27] |
Wolf T, Mcgregor G.The development of a heat wave vulnerability index for London, United Kingdom. Weather & Climate Extremes, 2013, 1(1): 59-68.
doi: 10.1016/j.wace.2013.07.004 |
[28] |
Weber S, Sadoff N, Zell E, et al.Policy-relevant indicators for mapping the vulnerability of urban populations to extreme heat events: A case study of Philadelphia. Applied Geography, 2015, 63: 231-243.
doi: 10.1016/j.apgeog.2015.07.006 |
[29] |
Reid C E,O'Neill M S, Gronlund C J, et al. Mapping community determinants of heat vulnerability. Environmental Health Perspectives, 2009, 117(11): 1730-1736.
doi: 10.1289/ehp.0900683 pmid: 2801183 |
[30] |
Bradford K, Abrahams L S, Hegglin M, et al.A Heat Vulnerability index and adaptation solutions for Pittsburgh, Pennsylvania. Environmental Science & Technology, 2015, 49(19): 11303-11311.
doi: 10.1021/acs.est.5b03127 pmid: 26333158 |
[31] |
Bao J, Li X, Yu C.The construction and validation of the heat vulnerability index, a review. International Journal of Environmental Research & Public Health, 2015, 12(7): 7220-7234.
doi: 10.3390/ijerph120707220 pmid: 4515652 |
[32] | Stocker T F, Qin D, Plattner G K, et al.IPCC,2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013. |
[33] |
Kates R W, Leatherman S P.Reconstruction of New Orleans after Hurricane Katrina: A research perspective. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14653-60.
doi: 10.1073/pnas.0605726103 pmid: 17003119 |
[34] |
Nandy S, Singh C, Das K K, et al.Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecological Indicators, 2015, 57: 182-195.
doi: 10.1016/j.ecolind.2015.04.024 |
[35] |
Masozera M, Bailey M, Kerchner C.Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecological Economics, 2007, 63(2/3): 299-306.
doi: 10.1016/j.ecolecon.2006.06.013 |
[36] |
Zhou Yang, Li Ning, Wu Wenxiang, et al.Research progress on social vulnerability to natural disasters. Journal of Catastrophology, 2014, 29(2): 128-135.
doi: 10.3969/j.issn.1000-811X.2014.02.025 |
[周扬, 李宁, 吴文祥, 等. 自然灾害社会脆弱性研究进展. 灾害学, 2014, 29(2): 128-135.]
doi: 10.3969/j.issn.1000-811X.2014.02.025 |
|
[37] | Zhang Mingshun, Wang Yichen.Research on evaluation system of heat wave vulnerability in Beijing city. Urban and Environmental Studies, 2015(1): 16-33. |
[张明顺, 王义臣. 北京市高温热浪脆弱性评价. 城市与环境研究, 2015(1): 16-33.] | |
[38] | Li Tiantian, Du Yangjun, Mo Yang, et al , Human health risk assessment of heat wave based on vulnerability: A review of recent studies. Journal of Environment and Health, 2014, 31(6): 547-550. |
[李湉湉, 杜艳君, 莫杨, 等. 基于脆弱性的高温热浪人群健康风险评估研究进展. 环境与健康杂志, 2014, 31(6): 547-550.] | |
[39] |
Uejio C, Wilhelmi O, Golden J, et al.Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place, 2011, 17(2): 498-507.
doi: 10.1016/j.healthplace.2010.12.005 pmid: 21216652 |
[40] |
Johnson D, Stanforth A, Lulla V, et al.Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 2012, 35(1): 23-31.
doi: 10.1016/j.apgeog.2012.04.006 |
[41] |
Wang Yan, Fang Chuanglin, Zhang Qiang.Progress and prospect of urban vulnerability. Progress in Geography, 2013, 32(5): 755-768.
doi: 10.11820/dlkxjz.2013.05.007 |
[王岩, 方创琳, 张蔷. 城市脆弱性研究评述与展望. 地理科学进展, 2013, 32(5): 755-768.]
doi: 10.11820/dlkxjz.2013.05.007 |
|
[42] |
Yin Z, Yin J, Zhang X.Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951-2010. Journal of Geographical Sciences, 2013, 23(3): 436-446.
doi: 10.1007/s11442-013-1020-z |
[43] | Xu Xuegong, Yan Lei, Xu Lifen, et al.Ecological risk assessment of natural disasters in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(5): 901-908. |
[许学工, 颜磊, 徐丽芬, 等. 中国自然灾害生态风险评价. 北京大学学报(自然科学版), 2011, 47(5): 901-908.] | |
[44] | Xu Hanqiu.Urban expansion process in the center of the Fuzhou basin, southeast China in 1976-2006. Scientia Geographica Sinica, 2011, 31(3): 351-357. |
[徐涵秋. 近30a来福州盆地中心的城市扩展进程. 地理科学, 2011, 31(3): 351-357.] | |
[45] |
Cutter S L.Vulnerability to environmental hazards. Progress in Human Geography, 1996, 20(4): 529-39.
doi: 10.1177/030913259602000407 |
[46] |
Zhu Q, Liu T, Lin H L, et al.The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global Health Action, 2014, 7(1): 25051-25051.
doi: 10.3402/gha.v7.25051 pmid: 4212080 |
[47] |
Xie Pan, Wang Yanglin, Peng Jian, et al.Health related urban heat wave vulnerability assessment: Research progress and framework. Progress in Geography, 2015, 34(2): 165-174.
doi: 10.11820/dlkxjz.2015.02.005 |
[谢盼, 王仰麟, 彭建, 等. 基于居民健康的城市高温热浪灾害脆弱性评价: 研究进展与框架. 地理科学进展, 2015, 34(2): 165-174.]
doi: 10.11820/dlkxjz.2015.02.005 |
|
[48] |
Tian Yaping, Xiang Qingcheng, Wang Peng.Regional coupled human-natural systems vulnerability and its evaluation indexes. Geographical Research, 2013, 32(1): 55-63 . [田亚平, 向清成, 王鹏. 区域人地耦合系统脆弱性及其评价指标体系. 地理研究, 2013, 32(1): 55-63.]
doi: 10.11821/yj2013010006 |
[49] |
Fang Chuanglin, Wang Yan.A comprehensive assessment of urban vulnerability and its spatial differentiation in China. Acta Geographica Sinica, 2015, 70(2): 234-247.
doi: 10.11821/dlxb201502005 |
[方创琳, 王岩. 中国城市脆弱性的综合测度与空间分异特征. 地理学报, 2015, 70(2): 234-247.]
doi: 10.11821/dlxb201502005 |
|
[50] |
Dong W, Liu Z, Liao H, et al.New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Climatic Change, 2015, 130(4): 505-518.
doi: 10.1007/s10584-015-1372-8 |
[51] |
Yu Zhongyuan, Li Bo, Zhang Xinshi.Social ecological system and vulnerability driving mechanism analysis. Acta Ecologica Sinica, 2014, 34(7): 1870-1879.
doi: 10.5846/stxb201210231472 |
[余中元, 李波, 张新时. 社会生态系统及脆弱性驱动机制分析. 生态学报, 2014, 34(7): 1870-1879.]
doi: 10.5846/stxb201210231472 |
|
[52] | Xu Hanqiu.Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors. Acta Ecologica Sinica, 2011, 31(14): 3890-3901. |
[徐涵秋. 基于城市地表参数变化的城市热岛效应分析. 生态学报, 2011, 31(14): 3890-3901.] | |
[53] |
Xu Hanqiu.Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite. Chinese Journal of Geophysics, 2015, 58(3): 741-747.
doi: 10.6038/cjg20150304 |
[徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演. 地球物理学报, 2015, 58(3): 741-747.]
doi: 10.6038/cjg20150304 |
|
[54] |
Ye Shilin, Qi Xinhua, Cheng Yu, et al.A study on the perception of heat waves among urban residents: Based on a survey in Fuzhou. Acta Ecologica Sinica, 2015, 35(20): 6814-6820.
doi: 10.5846/stxb201403240531 |
[叶士琳, 祁新华, 程煜, 等. 城市居民对高温热浪的感知: 基于福州市的调查. 生态学报, 2015, 35(20): 6814-6820.]
doi: 10.5846/stxb201403240531 |
|
[55] |
Cutter S, Boruff B, Shirley W.Social vulnerability to environmental hazards. Social Science Quarterly, 2003, 84(2): 242-261.
doi: 10.1111/1540-6237.8402002 |
[56] |
Miao Aimei, Jia Lidong, Li Miao, et al.The temporal and spatial distributions and circulation features of high temperature days during last 50 years in Shanxi. Progress in Geography, 2011, 30(7): 837-845.
doi: 10.11820/dlkxjz.2011.07.008 |
[苗爱梅, 贾利冬, 李苗, 等. 近50年山西高温日的时空分布及环流特征. 地理科学进展, 2011, 30(7): 837-845.]
doi: 10.11820/dlkxjz.2011.07.008 |
|
[57] | Shui Wei, Xu Xueyi, Wei Yali.Influencing factors of community participation in tourism development. Journal of Geography and Regional Planning, 2012, (7): 207-211. |
[58] | Chen Yanhua, Lin Yibiao, Huang Xianjin. The empirical analysis on the influencing factors and the difference of willingness to be paid from land-expropriated farmers: Based on 1436 household surveys in 16 counties of Fujian Province. Chinese Rural Economy, 2011(4): 26-37, 56. |
[陈艳华, 林依标, 黄贤金. 被征地农户意愿受偿价格影响因素及其差异性的实证分析: 基于福建省16个县1436户入户调查数据 . 中国农村经济, 2011(4): 26-37, 56.] | |
[59] |
Ma Xiaodong, Li Quanlin, Shen Yi.Morphological difference and regional types of rural settlements in Jiangsu Province. Acta Geographica Sinica, 2012, 67(4): 516-525.
doi: 10.11821/xb201204008 |
[马晓冬, 李全林, 沈一. 江苏省乡村聚落的形态分异及地域类型. 地理学报, 2012, 67(4): 516-525.]
doi: 10.11821/xb201204008 |
|
[60] | Xue Junfei, Chen Wen, Cao Youhui.Spatial pattern of urbanization in China since 2000 and its relationship with economic development: Analysis based on cities units. Resources & Environment in the Yangtze Basin, 2012, 21(1): 1-7. |
[薛俊菲, 陈雯, 曹有挥. 2000年以来中国城市化的发展格局及其与经济发展的相关性: 基于城市单元的分析. 长江流域资源与环境, 2012, 21(1): 1-7.] | |
[61] | Stafoggia M, Forastiere F, Agostini D, et al.Vulnerability to heat-related mortality: A multicity, population -based, case -crossoveranalysis. Epidemiology, 2006, (17): 315-323. |
[62] |
Reid C,O'Neill M, Gronlund C, et al. Mapping community determinants of heat vulnerability. Environmental Health Perspectives, 2009, 117(11): 1730-1736.
doi: 10.1289/ehp.0900683 pmid: 2801183 |
[63] |
Smit B, Burton I, Klein R J T, et al. The science of adaptation: A framework for assessment. Mitigation & Adaptation Strategies for Global Change, 1999, 4(3/4): 199-213.
doi: 10.1023/A:1009652531101 |
[64] |
Turner II B L, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079.
doi: 10.1073/pnas.1231335100 pmid: 12792023 |