Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (9): 1907-1920.doi: 10.11821/dlxb202009007
• Climate and Ecological Environment • Previous Articles Next Articles
LIU Jia1,2(), LIANG Yihang1,3, LI Peng1,2(
), XIAO Chiwei1,2
Received:
2019-10-23
Revised:
2020-06-27
Online:
2020-09-25
Published:
2020-11-25
Contact:
LI Peng
E-mail:liujiageor@163.com;lip@igsnrr.ac.cn
Supported by:
LIU Jia, LIANG Yihang, LI Peng, XIAO Chiwei. Occurrence characteristics and response to El Niño of MODIS-based active fires in Indonesia during 2001-2018[J].Acta Geographica Sinica, 2020, 75(9): 1907-1920.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Global Oceanic Niño Index (ONI) since 2000"
月份 | 12—2 | 1—3 | 2—4 | 3—5 | 4—6 | 5—7 | 6—8 | 7—9 | 8—10 | 9—11 | 10—12 | 11—1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | -1.7 | -1.4 | -1.1 | -0.8 | -0.7 | -0.6 | -0.6 | -0.5 | -0.5 | -0.6 | -0.7 | -0.7 |
2001 | -0.7 | -0.5 | -0.4 | -0.3 | -0.3 | -0.1 | -0.1 | -0.1 | -0.2 | -0.3 | -0.3 | -0.3 |
2002 | -0.1 | 0 | 0.1 | 0.2 | 0.4 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.3 | 1.1 |
2003 | 0.9 | 0.6 | 0.4 | 0 | -0.3 | -0.2 | 0.1 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 |
2004 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 |
2005 | 0.6 | 0.6 | 0.4 | 0.4 | 0.3 | 0.1 | -0.1 | -0.1 | -0.1 | -0.3 | -0.6 | -0.8 |
2006 | -0.8 | -0.7 | -0.5 | -0.3 | 0 | 0 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.9 |
2007 | 0.7 | 0.3 | 0 | -0.2 | -0.3 | -0.4 | -0.5 | -0.8 | -1.1 | -1.4 | -1.5 | -1.6 |
2008 | -1.6 | -1.4 | -1.2 | -0.9 | -0.8 | -0.5 | -0.4 | -0.3 | -0.3 | -0.4 | -0.6 | -0.7 |
2009 | -0.8 | -0.7 | -0.5 | -0.2 | 0.1 | 0.4 | 0.5 | 0.5 | 0.7 | 1.0 | 1.3 | 1.6 |
2010 | 1.5 | 1.3 | 0.9 | 0.4 | -0.1 | -0.6 | -1.0 | -1.4 | -1.6 | -1.7 | -1.7 | -1.6 |
2011 | -1.4 | -1.1 | -0.8 | -0.6 | -0.5 | -0.4 | -0.5 | -0.7 | -0.9 | -1.1 | -1.1 | -1.0 |
2012 | -0.8 | -0.6 | -0.5 | -0.4 | -0.2 | 0.1 | 0.3 | 0.3 | 0.3 | 0.2 | 0 | -0.2 |
2013 | -0.4 | -0.3 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.3 | -0.2 | -0.2 | -0.3 |
2014 | -0.4 | -0.4 | -0.2 | 0.1 | 0.3 | 0.2 | 0.1 | 0 | 0.2 | 0.4 | 0.6 | 0.7 |
2015 | 0.6 | 0.6 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 | 2.5 | 2.6 |
2016 | 2.5 | 2.2 | 1.7 | 1.0 | 0.5 | 0 | -0.3 | -0.6 | -0.7 | -0.7 | -0.7 | -0.6 |
2017 | -0.3 | -0.1 | 0.1 | 0.3 | 0.4 | 0.4 | 0.2 | -0.1 | -0.4 | -0.7 | -0.9 | -1.0 |
2018 | -0.9 | -0.8 | -0.6 | -0.4 | -0.1 | 0.1 | 0.1 | 0.2 | 0.4 | 0.7 | 0.9 | 0.8 |
Tab. 4
The proportions of MODIS active fires under varied occurrence intensities in Indonesian "fire-affected areas" and its five major islands during 2001-2018"
级别 | 强度范围 (次/a) | 有火区及在各岛占比(%) | |||||
---|---|---|---|---|---|---|---|
有火区 | 苏门答腊岛 | 加里曼丹岛 | 巴布亚岛 | 苏拉威西岛 | 爪哇岛 | ||
1级 | 1 | 75.88 | 70.48 | 74.35 | 81.76 | 85.57 | 89.59 |
2级 | 2~3 | 20.22 | 23.59 | 21.61 | 16.74 | 13.61 | 9.35 |
3级 | 4~7 | 3.38 | 5.06 | 3.59 | 1.28 | 0.68 | 0.70 |
4级 | 8~12 | 0.43 | 0.74 | 0.38 | 0.16 | 0.09 | 0.12 |
5级 | 13~22 | 0.08 | 0.12 | 0.07 | 0.06 | 0.02 | 0.15 |
6级 | 23~165 | 0.01 | 0.01 | 0.00 | 0 | 0.03 | 0.09 |
Tab. 5
The average proportions of the active fire that happened between August and October in Indonesia and its five major islands"
多年平均占比 | 苏门答腊岛 | 加里曼丹岛 | 巴布亚岛 | 苏拉威西岛 | 爪哇岛 | 全境 |
---|---|---|---|---|---|---|
所有年份 | 49.04 | 81.73 | 64.87 | 59.58 | 55.75 | 64.37 |
正常年份 | 43.47 | 80.01 | 69.04 | 55.78 | 57.93 | 61.03 |
厄尔尼诺特征年 | 63.14 | 90.29 | 71.63 | 71.38 | 61.28 | 77.78 |
厄尔尼诺非特征年 | 43.92 | 76.78 | 48.71 | 50.25 | 44.65 | 56.04 |
[1] | Harden J W, Trunbore S E, Stocks B J, et al. The role of fire in the boreal carbon budget. Global Change Biology, 2000,6(S1):174-184. |
[2] |
Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire. New Phytologist, 2005,165(2):525-537.
doi: 10.1111/j.1469-8137.2004.01252.x pmid: 15720663 |
[3] |
Crutzen P J, Andreae M O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 1990,250:1669-1678.
pmid: 17734705 |
[4] |
Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the earth system. Science, 2009,324(5926):481-484.
pmid: 19390038 |
[5] | Flannigan M D, Krawchuk M A, de Groot W J, et al. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009,18(5):483-507. |
[6] |
Westerling A L, Hidalgo H G, Cayan D R, et al. Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 2006,313(5789):940-943.
pmid: 16825536 |
[7] | Cochrane M A, Barber C P. Climate change, human land use and future fires in the Amazon. Global Change Biology, 2009,15(3):601-612. |
[8] | Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences of USA, 2010,107(45):19167-19170. |
[9] | van der Werf G R, Randerson J T, Giglio L, et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 2010,10(23):11707-11735. |
[10] | Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 2015,8(1):11-14. |
[11] | van der Werf G R, Randerson J T, Giglio L, et al. Global fire emissions estimates during 1997-2016. Earth System Science Data, 2017,9(2):697-720. |
[12] | Jolly W M, Cochrane M A, Freeborn P H, et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015,6(1):1-11. |
[13] |
Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015,525(7569):367-371.
doi: 10.1038/nature15371 pmid: 26381985 |
[14] |
Vadrevu K P, Lasko K, Giglio L, et al. Trends in vegetation fires in south and southeast Asian countries. Scientific Reports, 2019,9, 7422. Doi: 10.1038/s41598-019-43940-x.
pmid: 31092858 |
[15] | Lee H-H, Bar-Or R Z, Wang C. Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmospheric Chemistry and Physics, 2017,17(2):965-980. |
[16] | Marlier M E, DeFries R S, Voulgarakis A, et al. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Climate Change, 2013,3(2):131-136. |
[17] | Lestari R K, Watanabe M, Imada Y, et al. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environmental Research Letters, 2014,9(10):104010. Doi: 10.1088/1748-9326/9/10/104010. |
[18] | Ketterings Q M, Tri Wibowo T, van Noordwijk M, et al. Farmers' perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 1999,120(1):157-169. |
[19] | Marlier M E, DeFries R S, Kim P S, et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environmental Research Letters, 2015,10(8):085005. Doi: 10.1088/1748-9326/10/8/085005. |
[20] | Wösten J H M, Clymans E, Page S E, et al. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 2008,73(2):212-224. |
[21] | Huijnen V, Wooster M J, Kaiser J W, et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 2016,6(1):26886. Doi: 10.1038/srep26886. |
[22] | Ott L, Duncan B, Pawson S, et al. Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM. Journal of Geophysical Research, 2010,115(D14121):1-16. |
[23] | Heil A, Goldammer J G. Smoke-haze pollution: A review of the 1997 episode in Southeast Asia. Regional Environmental Change, 2001,2(1):24-37. |
[24] | Jones D S. ASEAN and transboundary haze pollution in Southeast Asia. Asia Europe Journal, 2006,4(3):431-446. |
[25] | Crippa P, Castruccio S, Archer-Nicholls S, et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 2016,6(1):37074. Doi: 10.1038/srep37074. |
[26] | Thirumalai K DiNezio P N Okumura Y, et al. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications, 2017,8(1):15531. Doi: 10.1038/ncomms15531. |
[27] | Wooster M J, Perry G L W, Zoumas A. Fire, drought and El Nino relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000). Biogeosciences, 2012,9:317-340. |
[28] | Kogan F, Guo W. Strong 2015-2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing, 2017,38(1):161-178. |
[29] | Heil A, Langmann B, Aldrian E. Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and Adaptation Strategies for Global Change, 2006,12(1):113-133. |
[30] | Field R D, van der Werf G R, Fanin T, et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proceedings of the National Academy of Sciences of USA, 2016,113(33):9204-9209. |
[31] | Chen C C, Lin H W, Yu J Y, et al. The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños? Environmental Research Letters, 2016,11(10):104003. Doi: 10.1088/1748-9326/11/10/104003. |
[32] | Pan X, Chin M, Ichoku C M, et al. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979-2016. Journal of Geophysical Research: Atmospheres, 2018,123(15):7974-7988. |
[33] |
Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change. Science, 2013,342(6160):850-853.
pmid: 24233722 |
[34] | Aldrian E, Dwi Susanto R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 2003,23(12):1435-1452. |
[35] | Davies D K, Ilavajhala S, Min M W, et al. Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):72-79. |
[36] | Giglio L, Descloitres J, Justice C O, et al. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 2003,87(2/3):273-282. |
[37] | Schroeder W, Oliva P, Giglio L, et al. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 2014,143:85-96. |
[38] |
Giglio L, Schroeder W, Justice C O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 2016,178:31-41.
doi: 10.1016/j.rse.2016.02.054 pmid: 30158718 |
[39] | Li Peng, Li Wenjun, Feng Zhiming, et al. Spatiotemporal dynamics of active fire frequency in Southeast Asia with the FIRMS Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) data. Resources Science, 2019,41(8):1526-1540. |
[ 李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019,41(8):1526-1540.] | |
[40] | Chen Y, Morton D C, Andela N, et al. How much global burned area can be forecast on seasonal time scales using sea surface temperatures? Environmental Research Letters, 2016,11(4):45001. Doi: 10.1088/1748-9326/11/4/045001. |
[41] | Chen Y, Morton D C, Andela N, et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017,7(12):906-911. |
[42] | Hidayat R, Juniarti M D, Ma'rufah U. Impact of La Niña and La Niña Modoki on Indonesia rainfall variability//Earth and Environmental Science. IOP Publishing, 2018,149(1):012046. Doi: 10.1088/1755-1315/149/1/012046. |
No related articles found! |