Acta Geographica Sinica ›› 2020, Vol. 75 ›› Issue (7): 1494-1511.doi: 10.11821/dlxb202007012
• Climate Change and Surface Process • Previous Articles Next Articles
WANG Yanjun1,2(), WU Baosheng1, ZHONG Deyu1
Received:
2019-05-27
Revised:
2020-04-05
Online:
2020-07-25
Published:
2020-09-25
Supported by:
WANG Yanjun, WU Baosheng, ZHONG Deyu. Simulation of the main-channel cross-section geometry of the Lower Yellow River in response to water and sediment changes[J].Acta Geographica Sinica, 2020, 75(7): 1494-1511.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistics of incoming water and sediment conditions at Huayuankou station in different periods
时期 | 1961—1964年 | 1965—1973年 | 1974—1980年 | 1981—1985年 | 1986—1999年 | 2000—2015年 |
---|---|---|---|---|---|---|
径流量(亿m3) | 582.50 | 430.10 | 391.00 | 503.58 | 279.16 | 254.48 |
输沙量(亿t) | 7.87 | 13.99 | 10.95 | 9.00 | 6.86 | 0.95 |
含沙量(kg/m3) | 13.50 | 32.54 | 28.00 | 17.86 | 24.57 | 3.73 |
来沙系数(kg·s/m6) | 0.0073 | 0.0239 | 0.0226 | 0.0112 | 0.0278 | 0.0046 |
Tab. 2
Coefficient values of Eq. (4) for main-channel cross-sectional parameters in different reaches
河段 | K | a | b | β | R2 | K | a | b | β | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
主槽面积(A) | 主槽河宽(W) | ||||||||||
花高段 | 0.69 | 1.34 | -0.40 | 0.42 | 0.89 | 0.05 | 1.50 | -0.12 | 0.35 | 0.86 | |
高孙段 | 0.75 | 1.28 | -0.38 | 0.40 | 0.86 | 1.13 | 0.93 | -0.04 | 0.34 | 0.86 | |
孙艾段 | 4.40 | 0.97 | -0.21 | 0.37 | 0.89 | 11.12 | 0.57 | -0.02 | 0.34 | 0.80 | |
艾利段 | 23.35 | 0.71 | -0.17 | 0.35 | 0.94 | 42.87 | 0.32 | 0.04 | 0.24 | 0.94 | |
主槽水深(h) | 主槽断面河相系数(ξ) | ||||||||||
花高段 | 12.08 | -0.13 | -0.31 | 0.27 | 0.90 | 0.01 | 0.94 | 0.25 | 0.11 | 0.87 | |
高孙段 | 0.64 | 0.36 | -0.34 | 0.42 | 0.79 | 1.09 | 0.15 | 0.36 | 0.12 | 0.63 | |
孙艾段 | 0.38 | 0.42 | -0.21 | 0.42 | 0.88 | 10.26 | -0.18 | 0.26 | 0.25 | 0.62 | |
艾利段 | 0.45 | 0.43 | -0.23 | 0.45 | 0.86 | 14.53 | -0.29 | 0.30 | 0.31 | 0.71 |
[1] | Lacey G. Stable channels in alluvium. Proceedings of the Institution of Civil Engineers, 1929,229:259-292. |
[2] | Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper, 1953,252. |
[3] | Yu Jun. Exploration and application of hydraulic geometry in plain river. Yangtze River, 1982(3):61-67. |
[ 俞俊. 平原河流河相公式的探求和应用. 人民长江, 1982(3):61-67.] | |
[4] | Ni Jinren, Zhang Ren. Methods and their relationships in studies of regime relations. Acta Geographica Sinica, 1992,47(4):368-375. |
[ 倪晋仁, 张仁. 河相关系研究的各种方法及其间关系. 地理学报, 1992,47(4):368-375.] | |
[5] | Chen Xujian, Hu Chunhong. Regime theory on river bed evolution and its application in the Lower Yellow River. Journal of Sediment Research, 2006(3):14-22. |
[ 陈绪坚, 胡春宏. 河床演变的均衡稳定理论及其在黄河下游的应用. 泥沙研究, 2006(3):14-22.] | |
[6] |
Liu F, Chen S L, Peng J, et al. Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008. Journal of Geographical Sciences, 2011,21(6):1047-1061.
doi: 10.1007/s11442-011-0899-5 |
[7] |
Cui B L Chang X L Shi W Y. Abrupt changes of runoff and sediment load in the lower reaches of the Yellow River, China. Water Resources, 2014,41(3):252-260.
doi: 10.1134/S009780781403004X |
[8] | Wei Y H, Jiao J Y, Zhao G J, et al. Spatial-temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950-2013. Catena, 2016,140:105-115. |
[9] |
Xia X H, Dong J W, Wang M H, et al. Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River. The Science of the Total Environment, 2016,571:487-497.
doi: 10.1016/j.scitotenv.2016.07.015 pmid: 27401281 |
[10] | Li X N, Zhong D Y, Zhang Y J, et al. Wide river or narrow river: Future river training strategy for Lower Yellow River under global change. International Journal of Sediment Research, 2018,33(3):271-284. |
[11] | Peng Jun, Chen Shenliang, Liu Feng, et al. Erosion and siltation processes in the Lower Yellow River during different river courses into the sea. Acta Geographica Sinica, 2010,65(5):613-622. |
[ 彭俊, 陈沈良, 刘锋, 等. 不同流路时期黄河下游河道的冲淤变化过程. 地理学报, 2010,65(5):613-622.] | |
[12] | Lu Zhongchen, Chen Shaofeng, Chen Hao. The evolutionary tendency forecast of channel morphology and river state of the wandering braided rivers in the Lower Yellow River. Acta Geographica Sinica, 2000,55(6):729-736. |
[ 陆中臣, 陈劭锋, 陈浩. 黄河下游游荡段河道平面形态与河势变化趋势预测. 地理学报, 2000,55(6):729-736.] | |
[13] | Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 2017,157:93-113. |
[14] | van Maren D S, Yang M, Wang Z B. Predicting the morphodynamic response of silt-laden rivers to water and sediment release from reservoirs: Lower Yellow River, China. Journal of Hydraulic Engineering, 2011,137(1):90-99. |
[15] | Wang S J, Li Y K. Channel variations of the different channel pattern reaches in the Lower Yellow River from 1950 to 1999. Quaternary International, 2011,244(2):238-247. |
[16] | Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 2017,157:93-113. |
[17] | Sun Z Y, Wang W Z, Li Y, et al. Can the narrowing of the Lower Yellow River by regulation result in non-siltation and even channel scouring? Journal of Geographical Sciences, 2016,26(9):1337-1348 |
[18] | Tian S M, Wang W H, Xie B F, et al. Fluvial processes of the downstream reaches of the reservoirs in the Lower Yellow River. Journal of Geographical Sciences, 2016,26(9):1321-1336. |
[19] | Feng Pulin, Liang Zhiyong, Huang Jinchi, et al. Study on relation between the change of channel form and the series of water and sediment in the Lower Yellow River. Journal of Sediment Research, 2005(2):66-74. |
[ 冯普林, 梁志勇, 黄金池, 等. 黄河下游河槽形态演变与水沙关系研究. 泥沙研究, 2005(2):66-74.] | |
[20] | Hu Chunhong, Chen Jianguo, Liu Dabin, et al. Studies on the features of cross section's profile in the Lower Yellow River under the conditions of variable incoming water and sediment. Journal of Hydraulic Engineering, 2006,37(11):1283-1289. |
[ 胡春宏, 陈建国, 刘大滨, 等. 水沙变异条件下黄河下游河道横断面形态特征研究. 水利学报, 2006,37(11):1283-1289.] | |
[21] |
Xia J Q, Li X J, Zhang X L, et al. Recent variation in reach-scale bankfull discharge in the Lower Yellow River. Earth Surface Processes and Landforms, 2014,39(6):723-734.
doi: 10.1002/esp.3474 |
[22] | Xia J Q, Li X J, Li T, et al. Response of reach-scale bankfull channel geometry to the altered flow and sediment regime in the Lower Yellow River. Geomorphology, 2014,213:255-265. |
[23] | Wu Baosheng. Delayed response model for fluvial processes of alluvial rivers: I: Model development. Journal of Sediment Research, 2008(6):1-7. |
[ 吴保生. 冲积河流河床演变的滞后响应模型: I. 模型建立. 泥沙研究, 2008(6):1-7.] | |
[24] | Wu Baosheng. Delayed response model for fluvial processes of alluvial rivers: II. Model applications. Journal of Sediment Research, 2008(6):30-37. |
[ 吴保生. 冲积河流河床演变的滞后响应模型: II. 模型应用. 泥沙研究, 2008(6):30-37.] | |
[25] | Wu B S, Wang G Q, Xia J Q, et al. Response of bankfull discharge to discharge and sediment load in the Lower Yellow River. Geomorphology, 2008,100(3):366-376. |
[26] | Wu B S, X J Q, Fu X D, et al. Effect of altered flow regime on bankfull area of the Lower Yellow River, China. Earth Surface Processes and Landforms, 2008,33(10):1585-1601. |
[27] | Wu B S, Li L Y. Delayed-response model for bankfull discharge predictions in the Yellow River. International Journal of Sediment Research, 2011,26(4):445-459. |
[28] | Wu B S, Zheng S, Colin R T. A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Progress in Physical Geography, 2012,36(5):575-597. |
[29] | Zheng S, Wu B S, Colin R T, et al. Morphological evolution of the North Fork Toutle River following the eruption of Mount St. Helens, Washington. Geomorphology, 2014,208:102-116. |
[30] | Zheng S, Wu B S, Colin R T, et al. Case study of variation of sedimentation in the Yellow and Wei rivers. Journal of Hydraulic Engineering, 2015,141(3):05014009. Doi: 10.1061/(ASCE)HY.1943-7900.0000980. |
[31] | Zheng Shan, Tan Guangmin, Wu Baosheng, et al. Calculation method for water stage at Lijin in response to delta evolution. Journal of Hydraulic Engineering, 2015,46(3):315-325. |
[ 郑珊, 谈广鸣, 吴保生, 等. 利津水位对河口演变响应的计算方法. 水利学报, 2015,46(3):315-325.] | |
[32] | Wu Baosheng, Zheng Shan. Delayed Response Theory and Applications for Fluvial Processes. Beijing: China Water & Power Press, 2015. |
[ 吴保生, 郑珊. 河床演变的滞后响应理论与应用. 北京: 中国水利水电出版社, 2015.] | |
[33] | Zheng S, Wu B S, Wang K R, et al. Evolution of the Yellow River Delta, China: Impacts of channel avulsion and progradation. International Journal of Sediment Research, 2017,32(1):34-44. |
[34] | Shao Wenwei, Wu baosheng, Wang Yanjun, et al. Simulation of sedimentation processes in dry and wet seasons in the Xiaobeiganliu reach of the Yellow River. Acta Geographica Sinica, 2018,73(5):880-892. |
[ 邵文伟, 吴保生, 王彦君, 等. 黄河小北干流汛期和非汛期冲淤过程模拟. 地理学报, 2018,73(5):880-892.] | |
[35] | Wu Baosheng, Zhang Yuanfeng, Shen Guanqing, et al. Study on the Conditions of Water and Sediment to Maintain the Stable Main Channel in the Yellow River. Zhengzhou: The Yellow River Water Conservancy Press, 2010. |
[ 吴保生, 张原锋, 申冠卿, 等. 维持黄河主槽不萎缩的水沙条件研究. 郑州: 黄河水利出版社, 2010.] | |
[36] | Wang Suiji. Analysis of effect of water and sediment load and evolution trend of the different channel patterns in the lower Yellow River. Acta Sedimentologic Sinica, 2009,27(6):1163-1171. |
[ 王随继. 黄河下游不同河型河道的水沙效应及演变趋势分析. 沉积学报, 2009,27(6):1163-1171.] | |
[37] | Wang Suiji. Comparision of depositional dynamics among the braided, meandering, and straight channel reaches in the lower Yellow River. Acta Sedimentologica Sinica, 2010,28(2):307-313, 330. |
[ 王随继. 黄河下游辫状、弯曲和顺直河段间沉积动力特征比较. 沉积学报, 2010,28(2):307-313, 330.] | |
[38] | Zheng Shan. Study on the simulation of non-equilibrium fluvial processes[D]. Beijing: Tsinghua University, 2013. |
[ 郑珊. 非平衡态河床演变过程模拟研究[D]. 北京: 清华大学, 2013.] | |
[39] | Wang Yanjun, Wu Baosheng, Shen Guanqing. Adjustment processes in main channel geometries of the Lower Yellow River before and after the operation of Xiaolangdi Reservoir during 1986-2015. Acta Geographica Sinica, 2019,74(11):2411-2427. |
[ 王彦君, 吴保生, 申冠卿. 1986—2015年小浪底水库运行前后黄河下游主槽调整规律. 地理学报, 2019,74(11):2411-2427.] |