Acta Geographica Sinica ›› 2023, Vol. 78 ›› Issue (3): 714-728.doi: 10.11821/dlxb202303013
• Phytogeography • Previous Articles Next Articles
MA Bingxin1(), HE Caixia1, JING Juanli1,2(
), WANG Yongfeng1, LIU Bing1, HE Hongchang1
Received:
2022-07-11
Revised:
2023-02-24
Online:
2023-03-25
Published:
2023-03-27
Contact:
JING Juanli
E-mail:mabx1998@glut.edu.cn;2003080@glut.edu.cn
Supported by:
MA Bingxin, HE Caixia, JING Juanli, WANG Yongfeng, LIU Bing, HE Hongchang. Attribution of vegetation dynamics in Southwest China from 1982 to 2019[J].Acta Geographica Sinica, 2023, 78(3): 714-728.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | IPCC. Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] |
Ma F, Yuan X, Jiao Y, et al. Unprecedented Europe heat in June-July 2019: Risk in the historical and future context. Geophysical Research Letters, 2020, 47(11): e2020GL087809. DOI: 10.1029/2020GL087809.
doi: 10.1029/2020GL087809 |
[3] |
Fang Jingyun. Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 2021, 45(11): 1173-1176.
doi: 10.17521/cjpe.2021.0394 |
[方精云. 碳中和的生态学透视. 植物生态学报, 2021, 45(11): 1173-1176.]
doi: 10.17521/cjpe.2021.0394 |
|
[4] | Piao S L, Wang X H, Park T, et al. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[5] |
Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113(1-4): 97-120.
doi: 10.1016/S0168-1923(02)00104-1 |
[6] |
Gao W D, Zheng C, Liu X H, et al. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, 2022, 137: 108745. DOI: 10.1016/j.ecolind.2022.108745.
doi: 10.1016/j.ecolind.2022.108745 |
[7] |
Piao S L, Zhang X P, Chen A P, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62(10): 1551-1563.
doi: 10.1007/s11430-018-9363-5 |
[8] |
Huang W J, Duan W L, Chen Y N. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 2021, 784: 147193. DOI: 10.1016/j.scitotenv.2021.147193.
doi: 10.1016/j.scitotenv.2021.147193 |
[9] |
Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecological Indicators, 2021, 126: 107648. DOI: 10.1016/j.ecolind.2021.107648.
doi: 10.1016/j.ecolind.2021.107648 |
[10] |
Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386(6626): 698-702.
doi: 10.1038/386698a0 |
[11] |
Lotsch A, Friedl M A, Anderson B T, et al. Response of terrestrial ecosystems to recent Northern Hemispheric drought. Geophysical Research Letters, 2005, 32(6): L06705. DOI: 10.1029/2004GL022043.
doi: 10.1029/2004GL022043 |
[12] |
Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020, 75(5): 961-974.
doi: 10.11821/dlxb202005006 |
[金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974.]
doi: 10.11821/dlxb202005006 |
|
[13] | Du J, He Z B, Piatek K B, et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agricultural and Forest Meteorology, 2019, 269: 71-77. |
[14] |
Li L H, Zhang Y L, Wu J S, et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Science of the Total Environment, 2019, 678: 21-29.
doi: 10.1016/j.scitotenv.2019.04.399 |
[15] |
Shen M G, Cong N, Cao R Y. Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 2015, 35(12): 3707-3712.
doi: 10.1002/joc.4227 |
[16] |
Zhang C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011. Journal of Hydrology, 2020, 591: 125333. DOI: 10.1016/j.jhydrol.2020.125333.
doi: 10.1016/j.jhydrol.2020.125333 |
[17] |
Xiong Junnan, Li Jin, Cheng Weiming, et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China. Acta Geographica Sinica, 2019, 74(7): 1374-1391.
doi: 10.11821/dlxb201907008 |
[熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素. 地理学报, 2019, 74(7): 1374-1391.]
doi: 10.11821/dlxb201907008 |
|
[18] |
Liu D, Chen J Q, Ouyang Z T. Responses of landscape structure to the ecological restoration programs in the farming-pastoral ecotone of northern China. Science of The Total Environment, 2020, 710: 136311. DOI: 10.1016/j.scitotenv.2019.136311.
doi: 10.1016/j.scitotenv.2019.136311 |
[19] |
Guan X B, Shen H F, Li X H, et al. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Science of The Total Environment, 2019, 669: 342-352.
doi: 10.1016/j.scitotenv.2019.02.361 |
[20] |
Tang Jian, Cao Huiqun, Chen Jin. Effects of ecological conservation projects and climate variations on vegetation changes in the source region of the Yangtze River. Acta Geographica Sinica, 2019, 74(1): 76-86.
doi: 10.11821/dlxb201901006 |
[唐见, 曹慧群, 陈进. 生态保护工程和气候变化对长江源区植被变化的影响量化. 地理学报, 2019, 74(1): 76-86.]
doi: 10.11821/dlxb201901006 |
|
[21] |
Yu Y, Zhao W W, Martinez-Murillo J F, et al. Loess Plateau: From degradation to restoration. Science of the Total Environment, 2020, 738: 140206. DOI: 10.1016/j.scitotenv.2020.140206.
doi: 10.1016/j.scitotenv.2020.140206 |
[22] |
Yang Weishi, Dai Erfu, Zheng Du, et al. Spatial simulation of "Grain to Green Program" implementation in a typical region based on agent-based model. Acta Geographica Sinica, 2020, 75(9): 1983-1995.
doi: 10.11821/dlxb202009012 |
[杨微石, 戴尔阜, 郑度, 等. 基于多主体模型的典型区域退耕还林工程实施空间模拟. 地理学报, 2020, 75(9): 1983-1995.]
doi: 10.11821/dlxb202009012 |
|
[23] |
Liu Wenchao, Liu Jiyuan, Kuang Wenhui. Spatiotemporal patterns of soil protection effect of the Grain for Green Project in northern Shaanxi. Acta Geographica Sinica, 2019, 74(9): 1835-1852.
doi: 10.11821/dlxb201909010 |
[刘文超, 刘纪远, 匡文慧. 陕北地区退耕还林还草工程土壤保护效应的时空特征. 地理学报, 2019, 74(9): 1835-1852.]
doi: 10.11821/dlxb201909010 |
|
[24] |
Qi X Z, Jia J H, Liu H Y, et al. Relative importance of climate change and human activities for vegetation changes on China's silk road economic belt over multiple timescales. CATENA, 2019, 180: 224-237.
doi: 10.1016/j.catena.2019.04.027 |
[25] |
Yi L, Yu Z Y, Qian J, et al. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study. Ecological Indicators, 2021, 122: 107243. DOI: 10.1016/j.ecolind.2020. 107243.
doi: 10.1016/j.ecolind.2020. 107243 |
[26] |
Bernier P Y, Paré D, Stinson G, et al. Moving beyond the concept of "primary forest" as a metric of forest environment quality. Ecological Applications, 2017, 27(2): 349-354.
doi: 10.1002/eap.1477 |
[27] |
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586(7831): 720-723.
doi: 10.1038/s41586-020-2849-9 |
[28] |
Du Fangjuan, Zhou Yue, Zhuang Shurong, et al. Geographical studies of Southwest China based on articles published in Acta Geographica Sinica from 1934 to 2018. Acta Geographica Sinica, 2019, 74(11): 2243-2259.
doi: 10.11821/dlxb201911004 |
[杜芳娟, 周越, 庄淑蓉, 等. 基于《地理学报》创刊85年载文的中国西南地区之地理研究. 地理学报, 2019, 74(11): 2243-2259.]
doi: 10.11821/dlxb201911004 |
|
[29] |
Ma B X, Jing J L, Liu B, et al. Quantitative assessment of the relative contributions of climate change and human activities to NPP changes in the Southwest Karst area of China. Environmental Science and Pollution Research, 2022, 29(53): 80597-80611.
doi: 10.1007/s11356-022-21433-1 |
[30] |
Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line. Acta Geographica Sinica, 2017, 72(1): 148-160.
doi: 10.11821/dlxb201701012 |
[李佳洺, 陆大道, 徐成东, 等. 胡焕庸线两侧人口的空间分异性及其变化. 地理学报, 2017, 72(1): 148-160.]
doi: 10.11821/dlxb201701012 |
|
[31] | He Caixia. Study on the relationship between dynamic changes of NDVI and SPEI in Southwest China[D]. Guilin: Guilin University of Technology, 2022. |
[和彩霞. 西南地区NDVI动态变化及其与SPEI的关系研究[D]. 桂林: 桂林理工大学, 2022.] | |
[32] |
Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11(4): 1931-1946.
doi: 10.5194/essd-11-1931-2019 |
[33] |
Stow D A, Hope A, McGuire D, et al. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sensing of Environment, 2004, 89(3): 281-308.
doi: 10.1016/j.rse.2003.10.018 |
[34] |
Liu Y, Li Y, Li S C, et al. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sensing, 2015, 7(10): 13233-13250.
doi: 10.3390/rs71013233 |
[35] | Ma Bingxin, Jing Juanli, Xu Yong, et al. Spatial-temporal changes of NPP and its relationship with climate change in karst areas of Yunnan, Guizhou and Guangxi from 2000 to 2019. Ecology and Environmental Sciences, 2021, 30(12): 2285-2293. |
[马炳鑫, 靖娟利, 徐勇, 等. 2000—2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究. 生态环境学报, 2021, 30(12): 2285-2293.]
doi: 10.16258/j.cnki.1674-5906.2021.12.002 |
|
[36] |
Geerken R, Ilaiwi M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sensing of Environment, 2004, 90(4): 490-504.
doi: 10.1016/j.rse.2004.01.015 |
[37] |
Shi S Y, Yu J J, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 2021, 755: 142419. DOI: 10.1016/j.scitotenv.2020.142419.
doi: 10.1016/j.scitotenv.2020.142419 |
[38] |
Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Science of the Total Environment, 2021, 773: 145648. DOI: 10.1016/j.scitotenv.2021.145648.
doi: 10.1016/j.scitotenv.2021.145648 |
[39] | He Hongchang, Ma Bingxin, Jing Juanli, et al. Spatiotemporal changes of NPP and natural factors in the southwestern karst areas from 2000 to 2019. Research of Soil and Water Conservation, 2022, 29(3): 172-178, 188. |
[何宏昌, 马炳鑫, 靖娟利, 等. 近20年西南喀斯特地区植被NPP时空变化及自然因素地理探测. 水土保持研究, 2022, 29(3): 172-178, 188.] | |
[40] |
Hu Xiaoyang, Wang Zhaofeng, Zhang Yili, et al. Spatialization method of grazing intensity and its application in Tibetan Plateau. Acta Geographica Sinica, 2022, 77(3): 547-558.
doi: 10.11821/dlxb202203004 |
[胡晓阳, 王兆锋, 张镱锂, 等. 青藏高原放牧强度空间化方法与应用. 地理学报, 2022, 77(3): 547-558.]
doi: 10.11821/dlxb202203004 |
|
[41] | Feng Yunfei, Li Meng, Li Shaowei, et al. Effectiveness of grazing exclusion on the restoration of degraded alpine grasslands on the Northern Tibetan Plateau from 2010 to 2017. Pratacultural Science, 2019, 36(4): 1148-1162, 921. |
[冯云飞, 李猛, 李少伟, 等. 2010—2017年藏北高寒退化草地禁牧恢复效果评价. 草业科学, 2019, 36(4): 1148-1162, 921.] | |
[42] | Qiu H G, Su L F, Feng X L, et al. Role of monitoring in environmental regulation: An empirical analysis of grazing restrictions in pastoral China. Environmental Science & Policy, 2020, 114: 295-304. |
[43] |
Luo Y, Sun W Z, Yang K, et al. China urbanization process induced vegetation degradation and improvement in recent 20 years. Cities, 2021, 114: 103207. DOI: 10.1016/j.cities.2021.103207.
doi: 10.1016/j.cities.2021.103207 |
[44] |
Ghebrezgabher M G, Yang T B, Yang X M, et al. Assessment of NDVI variations in responses to climate change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Science, 2020, 23(3): 249-261.
doi: 10.1016/j.ejrs.2020.08.003 |
[45] |
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795.
doi: 10.1038/NCLIMATE3004 |
[46] |
Gao W D, Zheng C, Liu X H, et al. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, 2022, 137: 108745. DOI: 10.1016/j.ecolind.2022.108745.
doi: 10.1016/j.ecolind.2022.108745 |
[47] | Zhou X, Yamaguchi Y, Arjasakusuma S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Science of the Total Environment, 2018, 616: 730-743. |
[48] |
Qian C, Shao L Q, Hou X H, et al. Detection and attribution of vegetation greening trend across distinct local landscapes under China's Grain to Green Program: A case study in Shaanxi Province. CATENA, 2019, 183: 104182. DOI: 10.1016/j.catena.2019.104182.
doi: 10.1016/j.catena.2019.104182 |
[49] |
Li S S, Yang S N, Liu X F, et al. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sensing, 2015, 7(9): 11163-11182.
doi: 10.3390/rs70911163 |
[50] |
Kong D X, Miao C Y, Wu J W, et al. Time lag of vegetation growth on the Loess Plateau in response to climate factors: Estimation, distribution, and influence. Science of the Total Environment, 2020, 744: 140726. DOI: 10.1016/j.scitotenv.2020.140726.
doi: 10.1016/j.scitotenv.2020.140726 |
[51] |
Xu X, Liu H, Jiao F, et al. Time-varying trends of vegetation change and their driving forces during 1981-2016 along the Silk Road Economic Belt. CATENA, 2020, 195: 104796. DOI: 10.1016/j.catena.2020.104796.
doi: 10.1016/j.catena.2020.104796 |
[52] |
Zhang C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011. Journal of Hydrology, 2020, 591: 125333. DOI: 10.1016/j.jhydrol.2020.125333.
doi: 10.1016/j.jhydrol.2020.125333 |
[53] |
Ding Y, Xu J, Wang X, et al. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Science of the Total Environment, 2020, 716: 137166. DOI: 10.1016/j.scitotenv.2020.137166.
doi: 10.1016/j.scitotenv.2020.137166 |
[54] |
Wang J, Meng J J, Cai Y L. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environmental Geology, 2008, 54(6): 1185-1195.
doi: 10.1007/s00254-007-0901-9 |
[55] |
Hua W J, Chen H S, Zhou L M, et al. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sensing, 2017, 9(5): 425. DOI: 10.3390/rs9050425.
doi: 10.3390/rs9050425 |
[56] |
Luo Z H, Wu W C, Yu X J, et al. Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan Plateau. Remote Sensing, 2018, 10(9): 1352. DOI: 10.3390/rs10091352.
doi: 10.3390/rs10091352 |
[57] |
Wang S Y, Zhang B, Yang Q C, et al. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agricultural and Forest Meteorology, 2017, 232: 235-246.
doi: 10.1016/j.agrformet.2016.08.020 |
[58] |
Shao Quanqin, Liu Shuchao, Ning Jia, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153.
doi: 10.11821/dlxb202209001 |
[邵全琴, 刘树超, 宁佳, 等. 2000—2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153.]
doi: 10.11821/dlxb202209001 |
|
[59] |
Wu X T, Wang S, Fu B J, et al. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Science of the Total Environment, 2019, 678: 565-573.
doi: 10.1016/j.scitotenv.2019.05.022 |
[60] |
Niu Linan, Shao Quanqin, Ning Jia, et al. Ecoloqical changes and the tradeoff and synergy of ecosystem services in western China. Acta Geographica Sinica, 2022, 77(1): 182-195.
doi: 10.11821/dlxb202201013 |
[牛丽楠, 邵全琴, 宁佳, 等. 西部地区生态状况变化及生态系统服务权衡与协同. 地理学报, 2022, 77(1): 182-195.]
doi: 10.11821/dlxb202201013 |
|
[61] |
Li Shuangshuang, Yan Junping, Wan Jia. The spatial-temporal changes of vegetation restoration on Loess Plateau in Shaanxi-Gansu-Ningxia region. Acta Geographica Sinica, 2012, 67(7): 960-970.
doi: 10.11821/xb201207009 |
[李双双, 延军平, 万佳. 近10年陕甘宁黄土高原区植被覆盖时空变化特征. 地理学报, 2012, 67(7): 960-970.] | |
[62] |
Deng Chenhui, Bai Hongying, Gao Shan, et al. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 2018, 33(3): 425-438.
doi: 10.11849/zrzyxb.20170139 |
[邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 2018, 33(3): 425-438.]
doi: 10.11849/zrzyxb.20170139 |