Acta Geographica Sinica ›› 2023, Vol. 78 ›› Issue (3): 677-693.doi: 10.11821/dlxb202303011
• Phytogeography • Previous Articles Next Articles
Received:
2022-08-15
Revised:
2023-02-24
Online:
2023-03-25
Published:
2023-03-27
Supported by:
XU Jinyong. Estimation of the spatial distribution of potential forestation land and its climatic potential productivity in China[J].Acta Geographica Sinica, 2023, 78(3): 677-693.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The area of potential forestation land in different provincial-level regions of China (km2)
省份 | 1级 | 2级 | 3级 | 4级 | 5级 | 优先 | 其他 |
---|---|---|---|---|---|---|---|
北京 | 0.23 | 2081.68 | 291.69 | 181.06 | 41.99 | 2373.59 | 223.05 |
天津 | - | 258.79 | 18.82 | 7.06 | 0.72 | 277.61 | 7.79 |
河北 | 46.63 | 21538.72 | 14419.90 | 10242.97 | 328.73 | 36005.24 | 10571.70 |
山西 | 4203.92 | 13644.12 | 22109.80 | 10526.59 | 201.04 | 39957.84 | 10727.63 |
内蒙古 | 6383.31 | 24676.13 | 120868.96 | 195065.19 | 199932.95 | 151928.40 | 394998.15 |
辽宁 | 3476.69 | 8892.72 | 4698.80 | 654.65 | 17.67 | 17068.21 | 672.32 |
吉林 | 2092.35 | 2686.79 | 2331.27 | 1286.76 | 177.21 | 7110.41 | 1463.97 |
黑龙江 | 10696.89 | 6315.08 | 10803.20 | 8674.19 | 3986.05 | 27815.16 | 12660.25 |
上海 | 39.41 | 0.27 | 0.06 | 0.08 | 0.00 | 39.74 | 0.09 |
江苏 | 223.34 | 124.59 | 24.96 | 6.18 | 0.58 | 372.90 | 6.76 |
浙江 | 1599.77 | 1487.91 | 1003.10 | 427.39 | 46.80 | 4090.78 | 474.19 |
安徽 | 750.97 | 527.58 | 484.93 | 138.84 | 11.38 | 1763.48 | 150.22 |
福建 | 3361.48 | 2345.19 | 2246.52 | 713.25 | 39.45 | 7953.19 | 752.70 |
江西 | 2595.94 | 1308.24 | 1333.73 | 318.83 | 18.74 | 5237.91 | 337.56 |
山东 | 653.24 | 3567.67 | 1004.31 | 212.95 | 15.55 | 5225.22 | 228.50 |
河南 | 492.98 | 2931.87 | 1417.18 | 588.45 | 73.16 | 4842.03 | 661.61 |
湖北 | 1175.95 | 1829.64 | 2246.61 | 1223.86 | 147.87 | 5252.20 | 1371.74 |
湖南 | 3646.29 | 2777.29 | 3136.00 | 1114.86 | 89.67 | 9559.58 | 1204.53 |
广东 | 4456.31 | 2431.32 | 2268.83 | 694.62 | 68.58 | 9156.46 | 763.20 |
广西 | 2491.86 | 3349.71 | 4605.21 | 2934.20 | 604.42 | 10446.77 | 3538.62 |
海南 | 154.12 | 46.11 | 32.10 | 5.32 | 0.65 | 232.33 | 5.96 |
重庆 | 1174.93 | 3207.95 | 2792.36 | 1485.71 | 287.44 | 7175.24 | 1773.15 |
四川 | 12104.53 | 18114.31 | 24190.63 | 20002.26 | 5502.91 | 54409.47 | 25505.17 |
贵州 | 8688.43 | 8716.74 | 11017.11 | 5732.88 | 1195.65 | 28422.28 | 6928.54 |
云南 | 13215.96 | 15133.43 | 28449.40 | 16037.41 | 3007.01 | 56798.79 | 19044.41 |
西藏 | 4703.87 | 11930.17 | 48330.93 | 51899.35 | 14915.92 | 64964.98 | 66815.27 |
陕西 | 2928.42 | 8967.15 | 22919.75 | 13118.49 | 594.96 | 34815.32 | 13713.45 |
甘肃 | 4009.45 | 11822.58 | 24927.90 | 30725.87 | 33822.87 | 40759.92 | 64548.74 |
青海 | 1712.53 | 8426.19 | 18126.10 | 22556.16 | 33054.76 | 28264.82 | 55610.92 |
宁夏 | 76.09 | 646.79 | 2416.61 | 2869.16 | 14871.24 | 3139.49 | 17740.40 |
新疆 | - | - | - | 2796.50 | 312454.77 | - | 315251.27 |
台湾 | 353.01 | 144.37 | 119.12 | 127.06 | 60.79 | 616.49 | 187.86 |
合计 | 97508.88 | 189931.09 | 378635.89 | 402368.16 | 625571.55 | 666075.86 | 1027939.70 |
[1] | Ding Zhongli, Zhang Tao. Carbon Neutrality. Beijing: Science Press, 2022. |
[丁仲礼, 张涛. 碳中和:逻辑体系与技术需求. 北京: 科学出版社, 2022.] | |
[2] | Zhu Meiyu, Long Fei, Qi Huibo, et al. Spatial measurement and classification of forest carbon sink demand based on industry emission reduction. Journal of Zhejiang A&F University, 2021, 38(2): 377-386. |
[朱梅钰, 龙飞, 祁慧博, 等. 基于行业减排的森林碳汇需求空间测度与分类. 浙江农林大学学报, 2021, 38(2): 377-386.] | |
[3] |
Bryan B A, Gao L, Ye Y Q, et al. China's response to a national land-system sustainability emergency. Nature, 2018, 559(7713): 193-204.
doi: 10.1038/s41586-018-0280-2 |
[4] |
Baumgartner R J. Sustainable development goals and the forest sector: A complex relationship. Forests, 2019, 10(2): 152. DOI: 10.3390/f10020152.
doi: 10.3390/f10020152 |
[5] | Zhang J, Fu B, Stafford-Smith M, et al. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology & Evolution, 2021, 5(1): 10-13. |
[6] | Nave L E, Domke G M, Hofmeister K L, et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. PNAS, 2018, 115(11): 2776-2781. |
[7] |
Domke G M, Oswalt S N, Walters B F, et al. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. PNAS, 2020, 117(40): 24649-24651.
doi: 10.1073/pnas.2010840117 pmid: 32958649 |
[8] | Tong Sichun, Li Weizheng, Yan Taotao, et al. Identification of the land suitable for afforestation in karst area based on the evaluation of ecosystem service importance. Journal of Northwest Forestry University, 2020, 35(5): 159-165. |
[佟思纯, 李卫正, 严陶韬, 等. 基于生态系统服务功能重要性评价的喀斯特宜林地识别. 西北林学院学报, 2020, 35(5): 159-165.] | |
[9] | Wang Songwei, Guo Zhongsheng. Research progress of carbon sink forests in the context of global change. Forest Science and Technology, 2020(9): 8-11. |
[王松伟, 郭忠升. 全球变化背景下碳汇林研究进展. 林业科技通讯, 2020(9): 8-11.] | |
[10] | Tian Huiling, Zhu Jianhua, Li Chenyu, et al. Nature-based solution: Potential and economic benefits of carbon removal or carbon emission reduction through forestry approaches. Climate Change Research, 2021, 17(2): 195-203. |
[田惠玲, 朱建华, 李宸宇, 等. 基于自然的解决方案: 林业增汇减排路径、潜力与经济性评价. 气候变化研究进展, 2021, 17(2): 195-203.] | |
[11] |
Zhang L, Sun P, Huettmann F, et al. Where should China practice forestry in a warming world? Global Change Biology, 2022, 28(7): 2461-2475.
doi: 10.1111/gcb.v28.7 |
[12] |
Ferraz S F B, Vettorazzi C A. Identification of suitable areas for forest recovery based on principles of landscape ecology. Revista Árvore, 2003, 27(4): 575-583.
doi: 10.1590/S0100-67622003000400018 |
[13] |
Schulz J J, Schröder B. Identifying suitable multifunctional restoration areas for forest landscape restoration in Central Chile. Ecosphere, 2017, 8(1): e01644. DOI: 10.1002/ecs2.1644.
doi: 10.1002/ecs2.1644 |
[14] |
Hu T Y, Li X C, Gong P, et al. Evaluating the effect of plain afforestation project and future spatial suitability in Beijing. Science China Earth Sciences, 2020, 63(10): 1587-1598.
doi: 10.1007/s11430-019-9636-0 |
[15] | Chang Cun. Distribution characteristics of soil conservation forest in northern Shaanxi loess area[D]. Beijing: Beijing Forestry University, 2013. |
[常存. 陕北黄土区水土保持林宜林地空间分布特征研究[D]. 北京: 北京林业大学, 2013.] | |
[16] |
Gao Haidong, Pang Guowei, Li Zhanbin, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72(5): 863-874.
doi: 10.11821/dlxb201705008 |
[高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72(5): 863-874.]
doi: 10.11821/dlxb201705008 |
|
[17] |
Ahrends A, Hollingsworth P M, Beckschäfer P, et al. China's fight to halt tree cover loss. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1854): 20162559. DOI: 10.1098/rspb.2016.2559.
doi: 10.1098/rspb.2016.2559 |
[18] |
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2(2): 122-129.
doi: 10.1038/s41893-019-0220-7 pmid: 30778399 |
[19] |
Zhang Z X, Wang X, Zhao X L, et al. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sensing of Environment, 2014, 149: 142-154.
doi: 10.1016/j.rse.2014.04.004 |
[20] | Gu Xingfa, Li Minrong, Xu Donghua, et al. Green Book of Remote Sensing Monitoring:Report on Remote Sensing Monitoring of China Sustainability Development (2019). Beijing: Social Sciences Academic Press (China), 2020. |
[顾行发, 李闽榕, 徐东华, 等. 遥感监测绿皮书:中国可持续发展遥感监测报告(2019). 北京: 社会科学文献出版社, 2020.] | |
[21] |
Hall B, Motzkin G, Foster D R, et al. Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography, 2002, 29(10/11): 1319-1335.
doi: 10.1046/j.1365-2699.2002.00790.x |
[22] |
Nepstad D C, Stickler C M, Filho B S, et al. Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1498): 1737-1746.
doi: 10.1098/rstb.2007.0036 |
[23] | Li Lingchao, Deng Dandan, Zhang Dingwen, et al. Analysis on socio-economic determinants of forest fragmentation in Beijing-Tianjin-Hebei region. Forestry Economics, 2021, 43(4): 5-16. |
[李凌超, 邓丹丹, 张鼎文, 等. 京津冀森林破碎化的社会经济影响因素分析. 林业经济, 2021, 43(4): 5-16.] | |
[24] |
Li Yao, Xiao Xiangming, Li Xiangping, et al. Multi-scale assessments of forest fragmentation in China. Biodiversity Science, 2017, 25(4): 372-381.
doi: 10.17520/biods.2016257 |
[李瑶, 肖向明, 李香萍, 等. 中国森林破碎化多尺度评价. 生物多样性, 2017, 25(4): 372-381.]
doi: 10.17520/biods.2016257 |
|
[25] | Long Hexing, Shi Weiping, Liu Jinlong. Research review and outlook of forest fragmentation and its solutions in China. World Forestry Research, 2018, 31(1): 69-74. |
[龙贺兴, 时卫平, 刘金龙. 中国森林破碎化及其化解研究综述及展望. 世界林业研究, 2018, 31(1): 69-74.] | |
[26] | Chen J, Ban Y F, Li S. China: Open access to earth land-cover map. Nature, 2014, 514(7523): 434. |
[27] |
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 2021, 13(6): 2753-2776.
doi: 10.5194/essd-13-2753-2021 |
[28] |
Zhang X, Liu L, Wu C, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data, 2020, 12(3): 1625-1648.
doi: 10.5194/essd-12-1625-2020 |
[29] |
Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11(4): 1931-1946.
doi: 10.5194/essd-11-1931-2019 |
[30] |
Wang Xiangping, Zhang Ling, Fang Jingyun. Geographical differences in alpine timberline and its climatic interpretation in China. Acta Geographica Sinica, 2004, 59(6): 871-879.
doi: 10.11821/xb200406009 |
[王襄平, 张玲, 方精云. 中国高山林线的分布高度与气候的关系. 地理学报, 2004, 59(6): 871-879.] | |
[31] |
Holdridge L R. Determination of world plant formations from simple climatic data. Science, 1947, 105: 367-368.
doi: 10.1126/science.105.2727.367 pmid: 17800882 |
[32] | Kira T. A New Classification of Climate in Eastern Asia as the Basis for Agricultural Geography. Kyoto: Horticultural Institute of Kyoto University, 1945. |
[33] | Guo Xinchun, Wu Guoqiang. A GIS-based method for identifying and extracting micro-topography factors. Electric Power Survey & Design, 2019(Suppl.1): 207-209, 217. |
[郭新春, 吴国强. 基于GIS的微地形因子识别与提取. 电力勘测设计, 2019(Suppl.1): 207-209, 217.] | |
[34] | Qiu Chuantao, Li Dinghua. The calculation algorithms for average wind direction and their comparison. Plateau Meteorology, 1997, 16(1): 94-98. |
[邱传涛, 李丁华. 平均风向的计算方法及其比较. 高原气象, 1997, 16(1): 94-98.] | |
[35] | Li Zhenjie, Duan Changchun, Jin Lili, et al. Spatial and temporal variability of climatic potential productivity in Yunnan province, China. Chinese Journal of Applied Ecology, 2019, 30(7): 2181-2190. |
[李振杰, 段长春, 金莉莉, 等. 云南省气候生产潜力的时空变化. 应用生态学报, 2019, 30(7): 2181-2190.] | |
[36] | Zhou Guangsheng, Zheng Yuanrun, Chen Siqing, et al. NPP model of natural vegetation and its application in China. Scientia Silvae Sinicae, 1998, 34(5): 4-13. |
[周广胜, 郑元润, 陈四清, 等. 自然植被净第一性生产力模型及其应用. 林业科学, 1998, 34(5): 4-13.] | |
[37] |
Mann H B. Non-parametric tests against trend. Econometrica, 1945, 13(3): 245-259.
doi: 10.2307/1907187 |
[38] | Kendall M G. Rank Correlation Methods. 4th ed. London: Charles Griffin, 1975. |
[39] |
Esterby S R. Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrological Processes, 1996, 10: 127-149.
doi: 10.1002/(ISSN)1099-1085 |
[40] | Guo Xiaoqin, Liu Mingchun, Qian Li, et al. Evolution regularity of precipitation in the Shiyang River Basin on Mann-Kendall features. Arid Land Geography, 2010, 33(4): 593-599. |
[郭小芹, 刘明春, 钱莉, 等. 从Mann-Kendall特征看石羊河流域降水量的演变规律. 干旱区地理, 2010, 33(4): 593-599.] | |
[41] |
Shadmani M, Marofi S, Roknian M. Trend analysis in reference evapotranspiration using Mann-Kendall and spearman's rho tests in arid regions of Iran. Water Resources Management, 2012, 26(1): 211-224.
doi: 10.1007/s11269-011-9913-z |
[42] |
Zhou Guoyi, Xia Jun, Zhou Ping, et al. Improper vegetation restoration leads to reduction of water resources. Scientia Sinica: Terrae, 2021, 51(2):175-182.
doi: 10.1360/N072020-0157 |
[周国逸, 夏军, 周平, 等. 不恰当的植被恢复导致水资源减少. 中国科学: 地球科学, 2021, 51(2):175-182.] | |
[43] | UNFCCC. The Marrakesh Accords and the Marrakesh Declaration. Bonn: United Nations Framework Convention on Climate Change Secretariat, 2001. |
[44] | Zhang Xiaoquan, Hou Zhenhong. Definitions of afforestation, reforestation, and deforestation in relations to carbon accounting. Scientia Silvae Sinicae, 2003, 39(2): 145-152. |
[张小全, 侯振宏. 森林、造林、再造林和毁林的定义与碳计量问题. 林业科学, 2003, 39(2): 145-152.] | |
[45] |
Wang F, Pan X B, Gerlein-Safdi C, et al. Vegetation restoration in northern China: A contrasted picture. Land Degradation & Development, 2020, 31(6): 669-676.
doi: 10.1002/ldr.v31.6 |
[46] | Liu Shaoqian, Zhang Cuijuan, Suo Xiaorong. The effect of ground treatment on the effectiveness of fly-seeded afforestation. Rural Economy and Science-Technology, 2020, 31(2): 39-40. |
[刘少倩, 张翠娟, 索小荣. 浅谈地面处理对飞播造林成效的影响. 农村经济与科技, 2020, 31(2): 39-40.] | |
[47] | Tian Jianhua, Shi Rui, Wang Rui. Influence factors of afforestation by aerial seeding and improving measures in Shaanxi province. Modern Agricultural Science and Technology, 2015(19): 171-172. |
[田建华, 师蕊, 王锐. 陕西省飞播造林影响因素及提高措施. 现代农业科技, 2015(19): 171-172.] | |
[48] |
Zhou T, Shi P J, Jia G S, et al. Age-dependent forest carbon sink: Estimation via inverse modeling. Journal of Geophysical Research: Biogeosciences, 2015, 120(12): 2473-2492.
doi: 10.1002/jgrg.v120.12 |
[49] |
Hong S B, Yin G D, Piao S L, et al. Divergent responses of soil organic carbon to afforestation. Nature Sustainability, 2020, 3(9): 694-700.
doi: 10.1038/s41893-020-0557-y |
[50] | Ma Xuewei, Xiong Kangning, Zhang Yu, et al. Research progresses and prospects of carbon storage in forest ecosystems. Journal of Northwest Forestry University, 2019, 34(5): 62-72. |
[马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望. 西北林学院学报, 2019, 34(5): 62-72.] | |
[51] | Feng Yuan, Xiao Wenfa, Zhu Jianhua, et al. Impacts of afforestation on the carbon stocks and carbon sequestration rates of regional forest ecosystems. Journal of Ecology and Rural Environment, 2020, 36(3): 281-290. |
[冯源, 肖文发, 朱建华, 等. 造林对区域森林生态系统碳储量和固碳速率的影响. 生态与农村环境学报, 2020, 36(3): 281-290.] | |
[52] |
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333(6045): 988-993.
doi: 10.1126/science.1201609 pmid: 21764754 |
[53] |
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. PNAS, 2018, 115(16): 4015-4020.
doi: 10.1073/pnas.1700304115 pmid: 29666313 |
[1] | LIU Xiaopeng, FENG Kangli, WEI Yuxi, CUI Yunxia, JIANG Chunmei. A review on poverty geography research and disciplinary paradigm in China [J]. Acta Geographica Sinica, 2023, 78(3): 572-586. |
[2] | MA Bingxin, HE Caixia, JING Juanli, WANG Yongfeng, LIU Bing, HE Hongchang. Attribution of vegetation dynamics in Southwest China from 1982 to 2019 [J]. Acta Geographica Sinica, 2023, 78(3): 714-728. |
[3] | WANG Jiaoe, DU Fangye, XIAO Fan. Spatial evolution of new infrastructure and its determinants: A case study of big data centers [J]. Acta Geographica Sinica, 2023, 78(2): 259-272. |
[4] | DONG Shijie, XIN Liangjie, LI Shengfa, XIE Hualin, ZHAO Yuluan, WANG Xue, LI Xiubin, SONG Hengfei, LU Yahan. The extent and spatial distribution of terrace abandonment in China [J]. Acta Geographica Sinica, 2023, 78(1): 3-15. |
[5] | ZHANG Tian, HUANG Xiaoyan, LI Peng, DANG Xiaohu, CAO Xiaoshu, DENG Mingjiang. Basic theories and construction layout of eco-economic pivotal zonesin northwest China based on "Three Water Lines" strategy [J]. Acta Geographica Sinica, 2022, 77(9): 2154-2173. |
[6] | LIU Zemiao, HUANG Xianjin, LU Xuehe, LI Shengfeng, QI Xinxian. China's carbon neutrality path prediction under the shared social economic paths [J]. Acta Geographica Sinica, 2022, 77(9): 2189-2201. |
[7] | ZHANG Baiping, YAO Yonghui, XIAO Fei, ZHOU Wenzuo, ZHU Lianqi, ZHANG Junhua, ZHAO Fang, BAI Hongying, WANG Jing, YU Fuqin, ZHANG Xinghang, LIU Junjie, LI Jiayu, JIANG Ya. The finding and significance of the super altitudinal belt of montane deciduous broad-leaved forests in central Qinling Mountains [J]. Acta Geographica Sinica, 2022, 77(9): 2236-2248. |
[8] | LIU Xuanyu, LIU Yungang. "Marine ontology" and marine territorial governance in South China Sea [J]. Acta Geographica Sinica, 2022, 77(9): 2374-2388. |
[9] | XIONG Juhua, GAO Yang, WU Hao, SUN Weijun, LIU Xiaoqian, LIU Jianbao, YANG Gang, ZHANG Zhonghao, MAO Dehua. Exploring the integrative development paths of geographic sciences from the perspective of National Natural Science Foundation of China [J]. Acta Geographica Sinica, 2022, 77(8): 1839-1850. |
[10] | GONG Shengsheng, WANG Wuwei, YANG Linsheng, CHAI Yanwei, ZHOU Suhong, HUANG Lei, WANG Lan, CHENG Yang, GE Miao, LUO Yongjun. The key fields and action suggestions of geography participating in the construction of Healthy China [J]. Acta Geographica Sinica, 2022, 77(8): 1851-1872. |
[11] | LI Xiaojian. History of the ideas on economic geography in China: Period focus, evolution and prospect [J]. Acta Geographica Sinica, 2022, 77(8): 1873-1891. |
[12] | WANG Xiaohua, YANG Yuqi, LUO Xinyu, WEN Tao. The spatial correlation network and formation mechanism of China's high-quality economic development [J]. Acta Geographica Sinica, 2022, 77(8): 1920-1936. |
[13] | CHEN Shuting, LI Yurui, PAN Wei, WANG Wulin, JIN Fengjun. Evolution of China's overland transportation dominance and its economic effect: A county-level analysis [J]. Acta Geographica Sinica, 2022, 77(8): 1937-1952. |
[14] | LIN Zhihui, CHEN Ying, LIU Xianfeng, MA Yaofeng. Spatio-temporal pattern and influencing factors of cooperation network of China's inbound tourism cities [J]. Acta Geographica Sinica, 2022, 77(8): 2034-2049. |
[15] | YIN Yinghua, PENG Xiaozong, ZHAI Limei, ZHANG Yitao, WANG Hongyuan, LIU Hongbin. Nitrogen fertilizer reduction potential in the main rice producing region of black soil in Northeast China [J]. Acta Geographica Sinica, 2022, 77(7): 1650-1661. |