Acta Geographica Sinica ›› 2023, Vol. 78 ›› Issue (3): 548-557.doi: 10.11821/dlxb202303003
• Theoretical and Methodological Exploration • Previous Articles Next Articles
CHENG Changxiu1,2(), PEI Tao3, LIU Yu4, DU Yunyan3, SHEN Shi1, JIANG Jinchao5
Received:
2022-09-28
Revised:
2023-02-24
Online:
2023-03-25
Published:
2023-03-27
Supported by:
CHENG Changxiu, PEI Tao, LIU Yu, DU Yunyan, SHEN Shi, JIANG Jinchao. The practice and method of natural disasters situational awareness in the new era[J].Acta Geographica Sinica, 2023, 78(3): 548-557.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Traditional disaster observation and big data-based disaster situational awareness
传统灾害观测 | 大数据灾害感知 | |
---|---|---|
目标 | 强调精准测量;强调对灾害现象进行观察或测定 | 强调感官认知;强调对灾害状态的理解 |
对象 | 灾害中损毁地物的面积、强度 | 灾损的严重程度;承灾体人的需求、情感、社会结构变化等,甚至包括灾区社会经济以及人地关系的感知 |
技术 | 专业人员通过地基—空基—天基设备进行量测 | 基于公众或非专业化设备提供的大数据,采用智能化技术进行推理 |
优势 | 多种观测手段,优势互补,科学性更强, 强调要素性 | 公众观测有效补充了对承灾体人以及对社会经济的感知,强调综合性 |
劣势 | 缺少对承灾体“人”的观测 | 数据的来源和科学性受限,需要对数据进行清洗和可靠性评价,需要与科学小数据进行融合 |
[1] |
Shi Peijun, Song Changqing, Cheng Changxiu. Geographical synergetics: From understanding human-environment relationship to designing human-environment synergy. Acta Geographica Sinica, 2019, 74(1): 3-15.
doi: 10.11821/dlxb201901001 |
[史培军, 宋长青, 程昌秀. 地理协同论: 从理解“人—地关系”到设计“人—地协同”. 地理学报, 2019, 74(1): 3-15.]
doi: 10.11821/dlxb201901001 |
|
[2] |
Song Changqing, Cheng Changxiu, Shi Peijun. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 2018, 73(7): 1204-1213.
doi: 10.11821/dlxb201807002 |
[宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵. 地理学报, 2018, 73(7): 1204-1213.]
doi: 10.11821/dlxb201807002 |
|
[3] |
Fu Bojie. Thoughts on the recent development of physical geography. Progress in Geography, 2018, 37(1): 1-7.
doi: 10.18306/dlkxjz.2018.01.001 |
[傅伯杰. 新时代自然地理学发展的思考. 地理科学进展, 2018, 37(1): 1-7.]
doi: 10.18306/dlkxjz.2018.01.001 |
|
[4] |
Chen Fahu, Li Xin, Wu Shaohong, et al. Disciplinary structure of geographic science in China. Acta Geographica Sinica, 2021, 76(9): 2069-2073.
doi: 10.11821/dlxb202109001 |
[陈发虎, 李新, 吴绍洪, 等. 中国地理科学学科体系浅析. 地理学报, 2021, 76(9): 2069-2073.]
doi: 10.11821/dlxb202109001 |
|
[5] |
Li Xin, Zheng Donghai, Feng Min, et al. Information geography: The information revolution reshapes geography. Scientia Sinica: Terrae, 2022, 52(2): 370-373.
doi: 10.1360/SSTe-2021-0184 |
[李新, 郑东海, 冯敏, 等. 信息地理学: 信息革命重塑地理学. 中国科学: 地球科学, 2022, 52(2): 370-373.] | |
[6] | Lü Guonian, Yuan Linwang, Yu Zhaoyuan, et al. Information geography: A new fulcrum of geographic ternary world. Science China: Terrae, 2022, 52(2): 374-376. |
[闾国年, 袁林旺, 俞肇元, 等. 信息地理学: 地理三元世界的新支点. 中国科学: 地球科学, 2022, 52(2): 374-376.] | |
[7] | The Transition Team for Future Earth. Qu Jiangsheng, Zeng Jingjing, Wang Liwei, et al., trans. Future Earth Initial Design. Beijing: Science Press, 2015. |
[未来地球计划过渡小组. 曲建升, 曾静静, 王立伟, 等, 译. 未来地球计划初步设计. 北京: 科学出版社, 2015.] | |
[8] | Anonymous. The European Commission launches the "Destination Earth" (DestinE) Plan. Standardization of Surveying and Mapping, 2021, 37(4): 79. |
[佚名. 欧盟委员会启动“目标地球”DestinE计划. 测绘标准化, 2021, 37(4): 79.] | |
[9] | European Union. Destination Earth. https://digital-strategy.ec.europa.eu/en/policies/destination-earth, 2020-08-20. |
[10] |
Cheng Changxiu, Shi Peijun, Song Changqing, et al. Geographic big-data: A new opportunity for geography complexity study. Acta Geographica Sinica, 2018, 73(8): 1397-1406.
doi: 10.11821/dlxb201808001 |
[程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇. 地理学报, 2018, 73(8): 1397-1406.]
doi: 10.11821/dlxb201808001 |
|
[11] |
Liu Y, Liu X, Gao S, et al. Social Sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 2015, 105(3): 512-530.
doi: 10.1080/00045608.2015.1018773 |
[12] | Huang Chongfu, Tian Wen, Wang Rundong. Geospatial information diffusion model for inferring the demand intensity of assistance in information islands based on the Internet of intelligences for disaster mitigation. Journal of Natural Disasters, 2021, 30(2): 1-13. |
[黄崇福, 田雯, 王润东. 在救灾智联网中推测信息孤岛救助需求强度的空间信息扩散模型. 自然灾害学报, 2021, 30(2): 1-13.] | |
[13] |
Zhang T, Shen S, Cheng C X, et al. A topic model based framework for identifying the distribution of demand for relief supplies using social media data. International Journal of Geographical Information Science, 2021, 35(11): 2216-2237.
doi: 10.1080/13658816.2020.1869746 |
[14] |
Yates D, Paquette S. Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake. International Journal of Information Management, 2011, 31(1): 6-13.
doi: 10.1016/j.ijinfomgt.2010.10.001 |
[15] |
Kryvasheyeu Y, Chen H H, Obradovich N, et al. Rapid assessment of disaster damage using social media activity. Science Advances, 2016, 2(3): e1500779. DOI:10.1126/sciadv.1500779.
doi: 10.1126/sciadv.1500779 |
[16] | Su Kai, Cheng Changxiu, Murzintcev N, et al. Application and comparison of topic model in identifying latent topics from disaster-related tweets. Journal of Geo-Information Science, 2019, 21(8): 1152-1160. |
[苏凯, 程昌秀, Murzintcev N, 等. 主题模型在基于社交媒体的灾害分类中的应用及比较. 地球信息科学学报, 2019, 21(8): 1152-1160.]
doi: 10.12082/dqxxkx.2019.190046 |
|
[17] |
de Albuquerque J P, Herfort B, Brenning A, et al. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 2015, 29(4): 667-689.
doi: 10.1080/13658816.2014.996567 |
[18] |
Acosta R J, Kishore N, Irizarry R A, et al. Quantifying the dynamics of migration after Hurricane Maria in Puerto Rico. PNAS, 2020, 117(51): 202001671. DOI: 10.1073/pnas.2001671117.
doi: 10.1073/pnas.2001671117 |
[19] |
Jia J S, Li Y W, Lu X, et al. Triadic embeddedness structure in family networks predicts mobile communication response to a sudden natural disaster. Nature Communications, 2021, 12(1): 4286. DOI: 10.1038/s41467-021-24606-7.
doi: 10.1038/s41467-021-24606-7 pmid: 34257305 |
[20] |
Yabe T, Rao P S C, Ukkusuri S V, et al. Toward data-driven, dynamical complex systems approaches to disaster resilience. PNAS, 2022, 119(8): e2111997119. DOI: 10.1073/pnas.211199711.
doi: 10.1073/pnas.211199711 |
[21] |
Jiang J C, Liu J Z, Cheng C X, et al. Automatic estimation of urban waterlogging depths from video images based on ubiquitous reference objects. Remote Sensing, 2019, 11(5): 587. DOI: 10.3390/rs11050587.
doi: 10.3390/rs11050587 |
[22] | Wang Wen, Liu Yongwei, Kou Xiaohua, et al. EnKF and HYDRUS-1D based data assimilation experiments for improving soil moisture profile prediction. Journal of Hydraulic Engineering, 2012, 43(11): 1302-1311. |
[王文, 刘永伟, 寇小华, 等. 基于集合卡尔曼滤波和HYDRUS-1D模型的土壤剖面含水量同化试验. 水利学报, 2012, 43(11): 1302-1311.] | |
[23] | Li Manman, Shi Peng, Shang Yanli, et al. Real-time updating method for the state variables of Xinanjiang model based on ensemble Kalman filter. Journal of Hohai University (Natural Sciences), 2019, 47(3): 209-214. |
[李漫漫, 石朋, 尚艳丽, 等. 基于集合卡尔曼滤波的新安江模型状态变量实时修正方法. 河海大学学报(自然科学版), 2019, 47(3): 209-214.] | |
[24] | Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven earth system science. Nature, 2019, 566(7743): 159-204. |
[25] |
Bruen M, Yang J Q. Combined hydraulic and black-box models for flood forecasting in urban drainage systems. Journal of Hydrologic Engineering, 2006, 11(6): 589-596.
doi: 10.1061/(ASCE)1084-0699(2006)11:6(589) |
[26] |
Jiang S J, Zheng Y, Solomatine D. Improving AI system awareness of geoscience knowledge: Symbiotic integration of physical approaches and deep learning. Geophysical Research Letters, 2020, 47(13): e2020GL088229. DOI: 10.1029/2020GL088229.
doi: 10.1029/2020GL088229 |
[27] |
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378: 686-707.
doi: 10.1016/j.jcp.2018.10.045 |
[28] |
Yan J, Jin J M, Chen F R, et al. Urban flash flood forecast using support vector machine and numerical simulation. Journal of Hydroinformatics, 2018, 20(1): 221-231.
doi: 10.2166/hydro.2017.175 |
[29] | Dong Leihua, Xiong Lihua, Wan Min. Uncertainty analysis of hydrological modeling using the Bayesian Model Averaging Method. Journal of Hydraulic Engineering, 2011, 42(9): 1065-1074. |
[董磊华, 熊立华, 万民. 基于贝叶斯模型加权平均方法的水文模型不确定性分析. 水利学报, 2011, 42(9): 1065-1074.] | |
[30] |
Eyring V, Bony S, Meehl G A, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 2016, 9(5): 1937-1958.
doi: 10.5194/gmd-9-1937-2016 |
[31] | Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Climate and Earth System Modeling, 2020, 13: 5425-5464. |
[32] |
Samir K C, Wolfgang L. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 2017, 42: 181-192.
doi: 10.1016/j.gloenvcha.2014.06.004 |
[33] |
Cuaresma J C. Income projections for climate change research: A framework based on human capital dynamics. Global Environmental Change, 2017, 42: 226-236.
doi: 10.1016/j.gloenvcha.2015.02.012 |
[34] |
Cao B, Yu L, Li X C, et al. A 1 km global cropland dataset from 10000 BCE to 2100 CE. Earth System Science Data, 2021, 13(11): 5403-5421.
doi: 10.5194/essd-13-5403-2021 |
[35] | Dai Kaixuan, Shen Shi, Cheng Changxiu, et al. Assessment of urban flood mitigation capacity on the Qinghai-Tibet Plateau: The case of Lhasa city. Journal of Beijing Normal University (Natural Science), 2022, 58(2): 318-327. |
[戴开璇, 沈石, 程昌秀, 等. 青藏高原城市洪涝缓解能力评估: 以拉萨市为例. 北京师范大学学报(自然科学版), 2022, 58(2): 318-327.] | |
[36] |
Thiery W, Lange S, Rogelj J, et al. Intergenerational inequities in exposure to climate extremes. Science, 2021, Science, 374(6564): 158-160.
doi: 10.1126/science.abi7339 |
[37] |
Willner S N, Otto C, Levermann A. Global economic response to river floods. Nature Climate Change, 2018, 8(7): 594-598.
doi: 10.1038/s41558-018-0173-2 |
[38] |
Zhang T Y, van der Wiel K, Wei T Y, et al. Increased wheat price spikes and larger economic inequality with 2 °C global warming. One Earth, 2022, 5(8): 907-916.
doi: 10.1016/j.oneear.2022.07.004 |
[39] | Yang Shili, Dong Wenjie, Chou Jieming, et al. Research progress for the bidirectional coupling of the Earth system model and integrated assessment model. Climate Change Research, 2019, 15(4): 335-342. |
[杨世莉, 董文杰, 丑洁明, 等. 对地球系统模式与综合评估模型双向耦合问题的探讨. 气候变化研究进展, 2019, 15(4): 335-342.] | |
[40] |
Calvin K, Bond-Lamberty B. Integrated human-earth system modeling: State of the science and future directions. Environmental Research Letters, 2018, 13(6): 063006. DOI: 10.1088/1748-9326/aac642.
doi: 10.1088/1748-9326/aac642 |
[1] | ZHENG Minrui, ZHENG Xinqi, LI Tianle, ZHANG Lulu, LYU Yongqiang. Big-data driven functional interaction patterns and governance strategy for Beijing-Tianjin-Hebei region [J]. Acta Geographica Sinica, 2022, 77(6): 1374-1390. |
[2] | SHI Wenjiao, ZHANG Mo. A review of spatial prediction methods for soil particle-size fractions [J]. Acta Geographica Sinica, 2022, 77(11): 2890-2901. |
[3] | WEI Shimei, PAN Jinghu. Network structure resilience of cities at the prefecture level and above in China [J]. Acta Geographica Sinica, 2021, 76(6): 1394-1407. |
[4] | LI Meng, YUAN Wen, YUAN Wu, NIU Fangqu, LI Hanqin, HU Duanmu. Big data analysis on geographical relationship of the Arctic based on news reports [J]. Acta Geographica Sinica, 2021, 76(5): 1090-1104. |
[5] | WANG Lucang, LIU Haiyang, LIU Qing. China's city network based on Tencent's migration big data [J]. Acta Geographica Sinica, 2021, 76(4): 853-869. |
[6] | DU Yunyan, YI Jiawei, XUE Cunjin, QIAN Jiale, PEI Tao. Modeling and analysis of geographic events supported by multi-source geographic big data [J]. Acta Geographica Sinica, 2021, 76(11): 2853-2866. |
[7] | XU Jun, XU Yang, HU Lei, WANG Zhenbo. Discovering spatio-temporal patterns of human activity on the Qinghai-Tibet Plateau based on crowdsourcing positioning data [J]. Acta Geographica Sinica, 2020, 75(7): 1406-1417. |
[8] | LIU Yu, YAO Xin, GONG Yongxi, KANG Chaogui, SHI Xun, WANG Fahui, WANG Jiao'e, ZHANG Yi, ZHAO Pengfei, ZHU Di, ZHU Xinyan. Analytical methods and applications of spatial interactions in the era of big data [J]. Acta Geographica Sinica, 2020, 75(7): 1523-1538. |
[9] | LI Tao, WANG Jiao'e, GAO Xingchuan. Comparison of inter-city travel network during weekdays and holiday in China [J]. Acta Geographica Sinica, 2020, 75(4): 833-848. |
[10] | YI Jiawei, WANG Nan, QIAN Jiale, MA Ting, DU Yunyan, PEI Tao, ZHOU Chenghu, TU Wenna, LIU Zhang, WANG Huimeng. Spatio-temporal responses of urban road traffic and human activities in an extreme rainfall event using big data [J]. Acta Geographica Sinica, 2020, 75(3): 497-508. |
[11] | TONG Yun, MA Yong, LIU Haimeng. The short-term impact of COVID-19 epidemic on the migration of Chinese urban population and the evaluation of Chinese urban resilience [J]. Acta Geographica Sinica, 2020, 75(11): 2505-2520. |
[12] | CHEN Xiaoqiang, YUAN Lihua, SHEN Shi, LIANG Xiaoyao, WANG Yuanhui, WANG Xiangyu, YE Sijing, CHENG Changxiu, SONG Changqing. Analysis of the geo-relationships between China and its neighboring countries [J]. Acta Geographica Sinica, 2019, 74(8): 1534-1547. |
[13] | LIU Weidong, TANG Zhipeng, XIA Yan, HAN Mengyao, JIANG Wanbei. Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis [J]. Acta Geographica Sinica, 2019, 74(12): 2592-2603. |
[14] | WANG Jiao'e,JIAO Jingjuan,HUANG Jie,JIN Fengjun. Theory and methodology of transportation development and location measures [J]. Acta Geographica Sinica, 2018, 73(4): 666-676. |
[15] | Chen ZHANG, Zhenfang HUANG, Jie ZHANG, Junlian GE. Urban tourism destination personality and its cultural landscape representation via machine learning: A case study of Nanjing [J]. Acta Geographica Sinica, 2017, 72(10): 1886-1903. |