Acta Geographica Sinica ›› 2022, Vol. 77 ›› Issue (7): 1821-1836.doi: 10.11821/dlxb202207017
• Ecosystem Services • Previous Articles
MA Zhongxue1,2(), CUI Huijuan1,2(
), GE Quansheng1,2
Received:
2021-11-10
Revised:
2022-05-02
Online:
2022-07-25
Published:
2022-09-13
Contact:
CUI Huijuan
E-mail:mazx.20b@igsnrr.ac.cn;cuihj@igsnrr.ac.cn
Supported by:
MA Zhongxue, CUI Huijuan, GE Quansheng. Prediction of net primary productivity change pattern in China based on vegetation dynamic models[J].Acta Geographica Sinica, 2022, 77(7): 1821-1836.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The vegetation zoning in China
一级植被区 | 二级植被区 | 代码 | 一级植被区 | 二级植被区 | 代码 |
---|---|---|---|---|---|
寒温带针叶林区域 | 南寒温带针叶林地带 | Ⅰi | 温带北部荒漠草原亚区 | ⅥAic | |
温带针叶阔叶混交林区域 | 温带北部针叶阔叶混交林地带 | Ⅱi | 温带南部森林(草甸)草原 | ⅥAiia | |
温带南部针叶阔叶混交林地带 | Ⅱii | 温带南部荒漠草原亚区 | ⅥAiic | ||
暖温带落叶阔叶林区域 | 暖温带北部落叶栎林地带 | Ⅲi | 温带南部典型草原亚区 | ⅥAiib | |
暖温带南部落叶栎林地带 | Ⅲii | 温带北部荒漠草原亚区 | ⅥBia | ||
亚热带常绿阔叶林区域 | 北亚热带常绿、落叶混交林地带 | ⅣAi | 温带荒漠 区域 | 温带半灌木、矮乔木荒漠 地带 | ⅦAi |
中亚热带常绿阔叶林北部亚区 | ⅣAiia | 温带半灌木、灌木荒漠地带 | ⅦBi | ||
中亚热带常绿阔叶林南部亚区 | ⅣAiib | 温带灌木、禾草半荒漠亚区 | ⅦBia | ||
南亚热带季风常绿阔叶林地带 | ⅣAiii | 温带灌木、半灌木荒漠亚区 | ⅦBib | ||
中亚热带常绿阔叶林地带 | ⅣBi | 暖温带灌木半灌木荒漠亚区 | ⅦBiia | ||
南亚热带季风常绿阔叶林地带 | ⅣBii | 暖温带灌木半灌木、裸露地带 | ⅦBiib | ||
亚热带山地寒温性针叶林地带 | ⅣBiii | 青藏高原高寒植被区域 | 高寒灌丛、草甸地带 | ⅧAi | |
热带季雨林、雨林区域 | 北热带半常绿季雨林、湿润雨林地带 | ⅤAi | 高寒草甸地带 | ⅧAii | |
南热带季雨林、湿润雨林地带 | ⅤAii | 高寒草原地带 | ⅧBi | ||
北热带季节雨林、半常绿季雨林地带 | ⅤBi | 温性草原地带 | ⅧBii | ||
温带草原区域 | 温带北部草甸草原亚区 | ⅥAia | 高寒荒漠地带 | ⅧCi | |
温带北部典型草原亚区 | ⅥAib | 温性荒漠地带 | ⅧCii |
Tab. 3
Multi-year mean value of NPP in each vegetation area from 1985 to 2015 (μg/(m² s))
寒温带 针叶林 | 温带针阔 叶混交林 | 暖温带落 叶阔叶林 | 亚热带常 绿阔叶林 | 热带季雨 林、雨林 | 温带 草原 | 温带 荒漠 | 青藏 高寒区 | 全国 | |
---|---|---|---|---|---|---|---|---|---|
DLEM | 12.5 | 12.5 | 13.9 | 15.9 | 21.8 | 8.2 | 1.1 | 2.7 | 8.5 |
ORCHIDEE | 14.6 | 18.9 | 15.3 | 18.3 | 23.8 | 10.9 | 1.2 | 5.8 | 10.4 |
VISIT | 12.0 | 19.7 | 15.8 | 25.4 | 33.4 | 4.2 | 1.5 | 13.6 | 12.6 |
LPJ-GUESS | 17.4 | 18.8 | 15.1 | 15.4 | 19.9 | 13.3 | 4.0 | 2.8 | 10.5 |
LPJML | 15.4 | 16.8 | 15.7 | 19.6 | 23.0 | 10.8 | 2.5 | 9.6 | 11.7 |
CLM4.5 | 12.4 | 18.0 | 9.8 | 18.2 | 21.9 | 6.6 | 0.7 | 4.8 | 8.8 |
遥感反演值 | 8.5 | 9.5 | 7.7 | 9.9 | 12.5 | 6.2 | 2.4 | 3.4 | 6.4 |
[1] | Le Quéré C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2(12): 831-836. |
[2] | Wang B, Gao P, Niu X, et al. Policy-driven China's grain to green program: Implications for ecosystem services. Ecosystem Services, 2017, 27: 38-47. |
[3] | Wu D H, Piao S L, Zhu D, et al. Accelerated terrestrial ecosystem carbon turnover and its drivers. Global Change Biology, 2020, 26(9): 5052-5062. |
[4] | Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2measurements. Nature, 1996, 382(6587): 146-149. |
[5] | Chen D L, Chen H W. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environmental Development, 2013, 6: 69-79. |
[6] | Ding Yihui, Ren Guoyu, Shi Guangyu, et al. National Assessment Report of Climate Change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1): 3-8, 50. |
[ 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8, 50.] | |
[7] | Li Dan, Zhuang Yilin, Wu Xiuqin. Simulation and prediction of vegetation dynamics in the karst faulted basin from 2020 to 2050 in climate scenarios. Acta Geoscientica Sinica, 2021, 42(3): 435-443. |
[ 李丹, 庄义琳, 吴秀芹. 基于气候情景的岩溶断陷盆地2020-2050年植被动态变化模拟预测. 地球学报, 2021, 42(3): 435-443.] | |
[8] | Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience, 2004, 54(6): 547-560. |
[9] | Huang N, Niu Z, Wu C Y, et al. Modeling net primary production of a fast-growing forest using a light use efficiency model. Ecological Modelling, 2010, 221(24): 2938-2948. |
[10] |
Zhao Dongsheng, Wu Shaohong, Yin Yunhe. Variation trends of natural vegetation net primary productivity in China under climate change scenario. Chinese Journal of Applied Ecology, 2011, 22(4): 897-904.
pmid: 21774310 |
[ 赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布. 应用生态学报, 2011, 22(4): 897-904.]
pmid: 21774310 |
|
[11] | Sun Jinke, Niu Haipeng, Yuan Ming. Spatial pattern change and analysis of NPP in terrestrial vegetation ecosystem in China. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 162-168. |
[ 孙金珂, 牛海鹏, 袁鸣. 中国陆地植被生态系统NPP空间格局变迁分析. 农业机械学报, 2020, 51(6): 162-168.] | |
[12] | Zhang Meiling, Chen Quangong, Yan Peijie. Spatio-temporal distribution of natural grassland net primary productivity in China. Acta Agrestia Sinica, 2018, 26(5): 1124-1131. |
[ 张美玲, 陈全功, 闫培洁. 中国天然草地净初级生产力时空分布. 草地学报, 2018, 26(5): 1124-1131.] | |
[13] | Piao Shilong, Fang Jingyun, Guo Qinghua. Terrestrial net primary production and its spatio-temporal patterns in China during 1982-1999. Acta Scicentiarum Naturalum Universitis Pekinesis, 2001, 37(4): 563-569. |
[ 朴世龙, 方精云, 郭庆华. 1982-1999年我国植被净第一性生产力及其时空变化. 北京大学学报(自然科学版), 2001, 37(4): 563-569.] | |
[14] | Liang W, Yang Y T, Fan D M, et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 2015, 204: 22-36. |
[15] | Lu Ling, Li Xin, Veroustraete F. Terrestrial net primary productivity and its spatial-temporal variability in Western China. Acta Ecologica Sinica, 2005, 25(5): 1026-1032, 1237. |
[ 卢玲, 李新, Veroustraete F. 中国西部地区植被净初级生产力的时空格局. 生态学报, 2005, 25(5): 1026-1032, 1237.] | |
[16] | Huang Jue, Chen Haishan, Yu Miao. Sensitivity experiments on response of terrestrial net primary productivity in China to climate change during 1981-2008. Transactions of Atmospheric Sciences, 2013, 36(3): 316-322. |
[ 黄珏, 陈海山, 俞淼. 1981-2008年中国陆地植被NPP对气候变化响应的敏感性试验. 大气科学学报, 2013, 36(3): 316-322.] | |
[17] | Fang O Y, Wang Y, Shao X M. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. Trees, 2016, 30(1): 281-294. |
[18] | Zhao Dongsheng, Wu Shaohong. Responses of vulnerability for natural ecosystem to climate change in China. Acta Geographica Sinica, 2013, 68(5): 602-610. |
[ 赵东升, 吴绍洪. 气候变化情景下中国自然生态系统脆弱性研究. 地理学报, 2013, 68(5): 602-610.] | |
[19] |
Yin Yunhe, Ma Danyang, Deng Haoyu, et al. Climate change risk assessment of ecosystem productivity in the arid humid transition zone of northern China. Acta Geographica Sinica, 2021, 76(7): 1605-1617.
doi: 10.11821/dlxb202107003 |
[ 尹云鹤, 马丹阳, 邓浩宇, 等. 中国北方干湿过渡区生态系统生产力的气候变化风险评估. 地理学报, 2021, 76(7): 1605-1617.]
doi: 10.11821/dlxb202107003 |
|
[20] | Liu Shaojun, Li Weiguang, Chen Xiaomin, et al. Prediction of net primary productivity of vegetation in main rubber areas of China under future climate change. Chinese Journal of Tropical Crops, 2020, 41(3): 622-626. |
[ 刘少军, 李伟光, 陈小敏, 等. 未来气候变化情景下中国橡胶主产区内植被净初级生产力预估. 热带作物学报, 2020, 41(3): 622-626.] | |
[21] | Feng Xiaohui, Cheng Ruimei, Xiao Wenfa, et al. Productivity and carbon dynamic of the Masson pine stands in Jigongshan region based on LPJ-GUESS model. Scientia Silvae Sinicae, 2013, 49(4): 7-15. |
[ 封晓辉, 程瑞梅, 肖文发, 等. 基于LPJ-GUESS模型的鸡公山马尾松林生产力和碳动态. 林业科学, 2013, 49(4): 7-15.] | |
[22] | Sun Guodong. Simulation of potential vegetation distribution and estimation of carbon flux in China from 1981 to 1998 with LPJ dynamic global vegetation model. Climatic and Environmental Research, 2009, 14(4): 341-351. |
[ 孙国栋. LPJ模型对1981-1998年中国区域潜在植被分布和碳通量的模拟. 气候与环境研究, 2009, 14(4): 341-351.] | |
[23] |
Tian Hanqin, Liu Mingliang, Zhang Chi, et al. The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geographica Sinica, 2010, 65(9): 1027-1047.
doi: 10.11821/xb201009001 |
[ 田汉勤, 刘明亮, 张弛, 等. 全球变化与陆地系统综合集成模拟: 新一代陆地生态系统动态模型(DLEM). 地理学报, 2010, 65(9): 1027-1047.]
doi: 10.11821/xb201009001 |
|
[24] |
Peng Shushi, Yue Chao, Chang Jinfeng. Developments and applications of terrestrial biosphere model. Chinese Journal of Plant Ecology, 2020, 44(4): 436-448.
doi: 10.17521/cjpe.2019.0315 |
[ 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用. 植物生态学报, 2020, 44(4): 436-448.]
doi: 10.17521/cjpe.2019.0315 |
|
[25] | Wang Yuanyuan, Xie Zhenghui, Jia Binghao, et al. Simulation and evaluation of gross primary productivity in China by using land surface model CLM4. Climatic and Environmental Research, 2015, 20(1): 97-110. |
[ 王媛媛, 谢正辉, 贾炳浩, 等. 基于陆面过程模式CLM4的中国区域植被总初级生产力模拟与评估. 气候与环境研究, 2015, 20(1): 97-110.] | |
[26] | Chen Pengfei. Monthly NPP dataset covering China's terrestrial ecosystems at north of 18°N (1985-2015). Journal of Global Change Data & Discovery, 2019, 3(1): 34-41. |
[ 陈鹏飞. 北纬18°以北中国陆地生态系统逐月净初级生产力1公里栅格数据集(1985-2015). 全球变化数据学报, 2019, 3(1): 34-41.] | |
[27] |
Naeem S, Zhang Y Q, Tian J, et al. Quantifying the impacts of anthropogenic activities and climate variations on vegetation productivity changes in China from 1985 to 2015. Remote Sensing, 2020, 12(7): 1113. DOI: 10.3390/rs12071113.
doi: 10.3390/rs12071113 |
[28] | Huang L, Ning J, Zhu P, et al. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. Journal of Geographical Sciences, 2021, 31(4): 518-534. |
[29] | Tian H Q, Chen G S, Lu C Q, et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: Toward a full accounting of the greenhouse gas budget. Climatic Change, 2015, 129(3-4): 413-426. |
[30] | Smith B, Wårlind D, Arneth A, et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 2014, 11(7): 2027-2054. |
[31] |
Lawrence D M, Oleson K W, Flanner M G, et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 2011, 3(1): M03001. DOI: 10.1029/2011MS00045.
doi: 10.1029/2011MS00045 |
[32] | Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecological Modelling, 2002, 151(2-3): 143-176. |
[33] | Zhang Qipeng, Wang Jian, Zhang Zhigang, et al. Dynamic change of landscape patterns and its driving mechanism in the Qinghai-Tibetan alpine meadow. Acta Ecologica Sinica, 2019, 39(17): 6510-6521. |
[ 张起鹏, 王建, 张志刚, 等. 高寒草甸草原景观格局动态演变及其驱动机制. 生态学报, 2019, 39(17): 6510-6521.] | |
[34] | Zhou Huakun, Zhao Xinquan, Zhou Li, et al. A study on correlations between vegetation degradation and soil degradation in the "alpine meadow" of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, (3): 31-40. |
[ 周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, (3): 31-40.] | |
[35] | Zhou Yuke. Analysis of controlling factors for vegetation productivity in Northeast China. Acta Geographica Sinica, 2020, 75(1): 53-67. |
[ 周玉科. 中国东北地区植被生产力控制因素分析. 地理学报, 2020, 75(1): 53-67.]
doi: 10.11821/dlxb202001005 |
|
[36] |
Zhang Yongqiang, Kong Dongdong, Zhang Xuanze, et al. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017. Acta Geographica Sinica, 2021, 76(3): 584-594.
doi: 10.11821/dlxb202103007 |
[ 张永强, 孔冬冬, 张选泽, 等. 2003-2017年植被变化对全球陆面蒸散发的影响. 地理学报, 2021, 76(3): 584-594.]
doi: 10.11821/dlxb202103007 |
|
[37] |
Ren Xiaoli, Lu Qianqian, He Honglin, et al. Spatio-temporal variations of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of Eastern China. Acta Geographica Sinica, 2019, 74(1): 63-75.
doi: 10.11821/dlxb201901005 |
[ 任小丽, 路倩倩, 何洪林, 等. 中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化. 地理学报, 2019, 74(1): 63-75.]
doi: 10.11821/dlxb201901005 |
|
[38] |
Wang Jianbang, Zhao Jun, Li Chuanhua, et al. The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015. Acta Geographica Sinica, 2019, 74(3): 504-519.
doi: 10.11821/dlxb201903008 |
[ 王建邦, 赵军, 李传华, 等. 2001-2015年中国植被覆盖人为影响的时空格局. 地理学报, 2019, 74(3): 504-519.]
doi: 10.11821/dlxb201903008 |
|
[39] | Liang Yulian, Yan Xiaodong. Prediction of climate change over China and uncertainty analysis during the 21st century under rcps. Journal of Tropical Meteorology, 2016, 32(2): 183-192. |
[ 梁玉莲, 延晓冬. RCPs情景下中国21世纪气候变化预估及不确定性分析. 热带气象学报, 2016, 32(2): 183-192.] | |
[40] | Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020, 75(5): 961-974. |
[ 金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974.]
doi: 10.11821/dlxb202005006 |
|
[41] |
Gao Jiangbo, Jiao Kewei, Wu Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013. Acta Geographica Sinica, 2019, 74(3): 534-543.
doi: 10.11821/dlxb201903010 |
[ 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析. 地理学报, 2019, 74(3): 534-543.]
doi: 10.11821/dlxb201903010 |
[1] | MO Xingguo, LIU Suxia, HU Shi. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River [J]. Acta Geographica Sinica, 2022, 77(7): 1730-1744. |
[2] | LI Jiahui, HUANG Lin, CAO Wei. The influencing mechanism of ecological asset gains and losses at the county level in China and its optimization and promotion paths [J]. Acta Geographica Sinica, 2022, 77(5): 1260-1274. |
[3] | LIU Haolong, ZHOU Yu, LIU Jun, DAI Junhu, GE Quansheng, QI Xiaobo. Characteristics and scenario simulation of the ice-sports season in Beijing Beihai Park under climate change [J]. Acta Geographica Sinica, 2022, 77(1): 35-50. |
[4] | ZHANG Chenbin, WU Duo, CHEN Xuemei, YUAN Zijie, CHEN Fahu. A preliminary study of the strata and age of ancient agricultural terraces in the Ganjia Basin, northeastern Tibetan Plateau [J]. Acta Geographica Sinica, 2022, 77(1): 66-78. |
[5] | DING Rui, SHI Wenjiao. Quantitative evaluation of the effects of climate change on cereal yields of Tibet during 1993-2017 [J]. Acta Geographica Sinica, 2021, 76(9): 2174-2186. |
[6] | XU Zhiwei, LU Huayu. Aeolian environmental change studies in the Mu Us Sandy Land, north-central China: Theory and recent progress [J]. Acta Geographica Sinica, 2021, 76(9): 2203-2223. |
[7] | BAO Kunshan, YANG Ting, XIAO Xiang, JIA Lin, WANG Guoping, SHEN Ji. Atmospheric dust deposition history over the past 150 a recorded by mountain peatlands in northeast China [J]. Acta Geographica Sinica, 2021, 76(9): 2283-2296. |
[8] | YIN Yunhe, MA Danyang, DENG Haoyu, WU Shaohong. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China [J]. Acta Geographica Sinica, 2021, 76(7): 1605-1617. |
[9] | HE Jin, LIU Yan, TIAN Yanguo, WANG Ze, XIAO Xin, JIANG Feng, LIU Tao, SUN Qianli, CHEN Jing, LI Maotian, CHEN Zhongyuan. Mid-Late Holocene climate change and its impact on the agriculture-pastoralism evolution in the West Liaohe Basin [J]. Acta Geographica Sinica, 2021, 76(7): 1618-1633. |
[10] | LI Cheng, ZHUANG Dafang, HE Jianfeng, WEN Kege. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia [J]. Acta Geographica Sinica, 2021, 76(7): 1634-1648. |
[11] | WANG Keyi, LIU Xiaohong, ZENG Xiaomin, XU Guobao, ZHANG Lingnan, LI Chunyue. Stable nitrogen isotope in tree rings: Progresses, problems and prospects [J]. Acta Geographica Sinica, 2021, 76(5): 1193-1205. |
[12] | ZHANG Fengju, XUE Bin, YU Ge. Lake level changes of central-northern Eurasia and their indicative significance for paleoclimate since Last Glacial Maximum [J]. Acta Geographica Sinica, 2021, 76(11): 2673-2684. |
[13] | MENG Xiangfeng, MA Shuang, XIANG Wenyi, KAN Changcheng, WU Kang, LONG Ying. Classification of shrinking cities in China using Baidu big data [J]. Acta Geographica Sinica, 2021, 76(10): 2477-2488. |
[14] | LI Zhe, DING Yongjian, CHEN Aijiao, ZHANG Zhihua, ZHANG Shiqiang. Characteristics of warming hiatus of the climate change in Northwest China from 1960 to 2019 [J]. Acta Geographica Sinica, 2020, 75(9): 1845-1859. |
[15] | LI Shuangshuang, WANG Chengbo, YAN Junping, LIU Xianfeng. Variability of the event-based extreme precipitation in the south and north Qinling Mountains [J]. Acta Geographica Sinica, 2020, 75(5): 989-1007. |