Acta Geographica Sinica ›› 2022, Vol. 77 ›› Issue (7): 1745-1761.doi: 10.11821/dlxb202207012
• Climate Change and Planet Geomorphology • Previous Articles Next Articles
ZHOU Sijie(), SUN Congjian(
), CHEN Wei, ZHANG Xin
Received:
2021-10-27
Revised:
2022-05-20
Online:
2022-07-25
Published:
2022-09-13
Contact:
SUN Congjian
E-mail:1720645725@qq.com;suncongjian@sina.com
Supported by:
ZHOU Sijie, SUN Congjian, CHEN Wei, ZHANG Xin. Precipitation isotope characteristics and water vapor sources in summer in eastern Loess Plateau[J].Acta Geographica Sinica, 2022, 77(7): 1745-1761.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Basic information of sampling sites of precipitation isotopes in eastern Loess Plateau
站点 | 纬度(°N) | 经度(°E) | 高程(m) | 样本数(个) | 气温(℃) | 日降水量(mm) | 相对湿度(%) |
---|---|---|---|---|---|---|---|
介休 | 37.02 | 111.91 | 740 | 46 | 17.02 | 20.12 | 82 |
赵城 | 36.25 | 111.67 | 430 | 15 | 18.8 | 15.97 | 90 |
临汾 | 36.07 | 111.57 | 451 | 13 | 22.5 | 20.12 | 82 |
大同 | 40.25 | 113.14 | 1044 | 39 | 22.12 | 8.05 | 72 |
阳泉 | 37.84 | 113.60 | 672 | 11 | 21.55 | 20.41 | 77 |
晋城 | 35.50 | 112.85 | 650 | 11 | 20.49 | 11.79 | 71 |
长治 | 36.12 | 112.87 | 1000 | 11 | 18.02 | 20.40 | 77 |
乡宁 | 35.97 | 110.84 | 900 | 6 | 21.87 | 11.05 | 89 |
Tab. 2
The values of δ2H, δ18O and d-excess in summer half-year precipitation in eastern Loess Plateau (‰)
区域 | 站点 | δ2H | δ18O | d-excess | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||
研究区 | -2.99 | -122.60 | -58.50 | -0.46 | -16.36 | -11.78 | 17.26 | -12.57 | 8.83 | |||
汾河谷地 | 介休 | -7.80 | -104.96 | -58.11 | -0.46 | -14.76 | -7.90 | 15.57 | -12.57 | 5.08 | ||
赵城 | -58.72 | -121.76 | -105.06 | -8.95 | -16.36 | -14.35 | 14.35 | 6.78 | 9.77 | |||
临汾 | -65.56 | -116.82 | -86.62 | -9.61 | -15.77 | -11.90 | 17.26 | -1.37 | 8.57 | |||
太行山土石地区 | 大同 | -24.65 | -122.60 | -96.40 | -3.44 | -16.36 | -12.90 | 12.30 | -2.69 | 6.80 | ||
阳泉 | -36.67 | -121.60 | -74.44 | -6.04 | -16.09 | -10.65 | 12.98 | 6.67 | 10.73 | |||
晋城 | -92.92 | -120.69 | -107.60 | -12.96 | -16.18 | -14.48 | 10.79 | 2.17 | 8.26 | |||
长治 | -2.99 | -121.67 | -71.67 | -2.21 | -16.14 | -10.11 | 16.85 | 2.62 | 9.22 | |||
丘陵沟壑区 | 乡宁 | -53.77 | -96.70 | -83.28 | -7.40 | -14.06 | -11.93 | 15.78 | 5.38 | 12.19 |
Tab. 3
The slopes and R-square between meteorological factors and surface precipitation δ18O
区域 | 站点 | δ18O-T | δ18O-P | δ18O-RH | |||||
---|---|---|---|---|---|---|---|---|---|
斜率 | R2 | 斜率 | R2 | 斜率 | R2 | ||||
汾河谷地 | 介休 | 0.38 | 0.31* | -0.12 | 0.13* | -3.08 | 0.002 | ||
赵城 | -0.02 | 0.004 | -0.05 | 0.12 | -9.06 | 0.25 | |||
临汾 | -0.16 | 0.24 | -0.07 | 0.36* | -5.62 | 0.18 | |||
太行山土石山区 | 大同 | 0.35 | 0.07 | -0.13 | 0.08 | -15.10 | 0.11* | ||
阳泉 | 0.39 | 0.13 | 0.33 | 0.04 | -4.73 | 0.02 | |||
晋城 | -0.09 | 0.20 | -0.03 | 0.15 | -6.40 | 0.55* | |||
长治 | -0.28 | 0.08 | -0.09 | 0.28 | 8.56 | 0.03 | |||
丘陵沟壑区 | 乡宁 | 0.07 | 0.004 | 0.06 | 0.02 | 37.56 | 0.37 |
Tab. 4
Isotopic and d-excess composition of precipitation at ground sampling site and the cloud base in eastern Loess Plateau (‰)
站点 | 要素(‰) | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 4—9月平均 | |
---|---|---|---|---|---|---|---|---|---|
介休站 | δ18O | 地表 | -12.73 | -9.93 | -9.77 | -5.38 | -4.78 | -8.14 | -8.46 |
云下 | -14.47 | -14.51 | -12.54 | -7.71 | -6.75 | -9.20 | -10.86 | ||
d-excess | 地表 | 11.51 | -2.57 | 3.57 | 1.10 | 8.40 | 5.14 | 4.53 | |
云下 | 23.87 | 22.08 | 22.14 | 18.12 | 22.91 | 12.49 | 20.27 | ||
赵城站 | δ18O | 地表 | -14.10 | - | -12.84 | -15.70 | -14.72 | -13.46 | -14.16 |
云下 | -16.55 | - | -13.19 | -16.07 | -15.11 | -14.16 | -15.02 | ||
d-excess | 地表 | 11.59 | - | 11.62 | 8.30 | 9.57 | 9.06 | 10.03 | |
云下 | 28.15 | - | 14.22 | 10.83 | 10.72 | 14.38 | 15.66 | ||
临汾站 | δ18O | 地表 | -10.70 | -11.15 | -11.47 | -13.36 | -12.66 | -15.77 | -12.52 |
云下 | -14.72 | -12.07 | -12.34 | -14.95 | -13.89 | -15.98 | -13.99 | ||
d-excess | 地表 | 8.90 | 8.76 | 9.06 | 4.80 | 8.55 | 9.33 | 8.23 | |
云下 | 37.86 | 15.55 | 15.45 | 16.49 | 17.72 | 10.90 | 19.00 | ||
大同站 | δ18O | 地表 | - | - | -12.94 | -11.27 | -14.90 | -15.09 | -13.55 |
云下 | - | - | -16.19 | -16.82 | -18.85 | -18.63 | -17.62 | ||
d-excess | 地表 | - | - | 8.12 | 5.89 | 6.92 | 8.05 | 7.25 | |
云下 | - | - | 31.52 | 44.83 | 32.43 | 31.67 | 35.11 | ||
阳泉站 | δ18O | 地表 | - | -10.42 | -8.57 | -11.24 | -12.48 | - | -10.68 |
云下 | - | -14.54 | -11.92 | -13.68 | -15.48 | - | -13.91 | ||
d-excess | 地表 | - | 11.80 | 12.07 | 9.72 | 9.63 | - | 10.81 | |
云下 | - | 42.62 | 37.03 | 27.37 | 32.23 | - | 34.81 | ||
晋城站 | δ18O | 地表 | -13.51 | -14.13 | -14.82 | -15.24 | -14.89 | - | -14.52 |
云下 | -17.47 | -20.91 | -17.97 | -17.64 | -16.98 | - | -18.19 | ||
d-excess | 地表 | 10.58 | 5.00 | 7.39 | 8.82 | 9.30 | - | 8.22 | |
云下 | 39.04 | 46.47 | 28.29 | 26.02 | 24.33 | - | 32.83 | ||
长治站 | δ18O | 地表 | -5.80 | - | -3.79 | -13.92 | -14.22 | -15.13 | -10.57 |
云下 | -7.93 | - | -6.18 | -17.86 | -14.72 | -16.15 | -12.57 | ||
d-excess | 地表 | 11.29 | - | 8.65 | 8.15 | 9.23 | 7.46 | 8.96 | |
云下 | 27.65 | - | 27.28 | 36.68 | 12.93 | 7.51 | 22.41 | ||
乡宁站 | δ18O | 地表 | - | - | - | - | -11.93 | - | -11.93 |
云下 | - | - | - | - | -13.21 | - | -13.21 | ||
d-excess | 地表 | - | - | - | - | 12.19 | - | 12.19 | |
云下 | - | - | - | - | 21.40 | - | 21.40 |
Tab. 5
Proportion of atmospheric water vapor paths in eastern Loess Plateau (%)
区域 | 海拔(m) | 纬度/经度 | 夏半年大气降水水汽输送路径及其占比(%) | |||||
---|---|---|---|---|---|---|---|---|
4月 | 5月 | 6月 | 7月 | 8月 | 9月 | |||
汾河谷地 | 740 | 37.02°N/111.91°E | 78.33西北 15.83东南 5.83正西 | 48.39西北 27.42正西24.19正北 | 43.70西北 28.57正西 27.73东北 | 36.29东南 33.06西北 30.65东北 | 46.77西北 40.32东南 12.90正北 | 50.42西北 29.41正西 20.17东南 |
太行山 | 1044 | 40.25°N/113.14°E | 78.33西北 11.67正北 10.00东南 | 43.55正北 42.74西北 13.71正西 | 47.50西北 28.33正北 24.17东南 | 39.17东南 32.50正西 28.33西北 | 59.68西北 22.58正北 17.74东南 | 54.17西北 24.17正西 21.67正北 |
丘陵沟壑 | 900 | 35.97°N/110.84°E | 80.00西北 20.00东南 | 62.90西北 37.10正西 | 60.00西北 25.83正西 14.17东南 | 45.97西北 37.10东南 16.94西南 | 48.39东南 37.10西北 14.52正北 | 47.50正西 28.33西北 24.17东北 |
[1] | Zhu G F, Guo H W, Qin D H, et al. Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data. Journal of Hydrology, 2019, 569: 423-435. |
[2] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512 pmid: 32661517 |
[3] | Guo Zhengsheng, Zheng Guozhang, Zhao Pei, et al. Effect of variation in water source area on stable isotopes in precipitation in the middle reach of the Yellow River Basin. Journal of Natural Resources, 2018, 33(11): 1979-1991. |
[ 郭政昇, 郑国璋, 赵培, 等. 水汽源区变化对黄河中游降水稳定同位素的影响. 自然资源学报, 2018, 33(11): 1979-1991.] | |
[4] | Zhao Minghua. Spatial distribution of stable isotopes in precipitation and source analysis of water vapor in Loess Plateau[D]. Yangling: Northwest A&F University, 2020. |
[ 赵明华. 黄土高原降水稳定同位素空间分布及水汽来源分析[D]. 杨凌: 西北农林科技大学, 2020.] | |
[5] |
Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia. Acta Geographica Sinica, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[ 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究. 地理学报, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002 |
|
[6] | Corcoran M C, Thomas E K, Boutt D F. Event-based precipitation isotopes in the Laurentian Great Lakes region reveal spatio-temporal patterns in moisture recycling. Journal of Geophysical Research: Atmospheres, 2019, 124(10): 5463-5478. |
[7] |
Cluett A A, Thomas E K, Evans S M, et al. Seasonal variations in moisture origin explain spatial contrast in precipitation isotope seasonality on coastal western Greenland. Journal of Geophysical Research: Atmospheres, 2021, 126(11). DOI: 10.1029/2020JD033543.
doi: 10.1029/2020JD033543 |
[8] | Loader N J, Young G H F, McCarroll D, et al. Summer precipitation for the England and Wales region, 1201-2000 CE, from stable oxygen isotopes in oak tree rings. Journal of Quaternary Science, 2020, 35(6): 731-736. |
[9] | Lone S A, Jeelani G, Deshpande R D, et al. Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus River basin, Ladakh. Atmospheric Research, 2019, 221: 46-57. |
[10] | Laonamsai J, Ichiyanagi K, Kamdee K. Geographic effects on stable isotopic composition of precipitation across Thailand. Isotopes in Environmental and Health Studies, 2020, 56(2): 111-121. |
[11] | Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review. Arid Zone Research, 2020, 37(4): 857-869. |
[ 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展. 干旱区研究, 2020, 37(4): 857-869.] | |
[12] | Pang Shuoguang, Zhao Shikun, Wen Rong, et al. Spatial and temporal variation of stable isotopes in precipitation in the Haihe River basin. Chinese Science Bulletin, 2015, 60(13): 1218-1226. |
[ 庞朔光, 赵诗坤, 文蓉, 等. 海河流域大气降水中稳定同位素的时空变化. 科学通报, 2015, 60(13): 1218-1226.] | |
[13] |
Zhao P P, Tan L C, Zhang P, et al. Stable isotopic characteristics and influencing factors in precipitation in the monsoon marginal region of northern China. Atmosphere, 2018, 9(3): 97. DOI: 10.3390/atmos9030097.
doi: 10.3390/atmos9030097 |
[14] |
Chen F L, Zhang M J, Wu X X, et al. A stable isotope approach for estimating the contribution of recycled moisture to precipitation in Lanzhou City, China. Water, 2021, 13(13): 1783. DOI: 10.3390/w13131783.
doi: 10.3390/w13131783 |
[15] | Sun C J, Shen Y J, Chen Y N, et al. Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia. Hydrological Sciences Journal, 2018, 63(1): 17-30. |
[16] |
Liu Xiaokang, Rao Zhiguo, Zhang Xiaojian, et al. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Acta Geographica Sinica, 2015, 70(1): 97-109.
doi: 10.11821/dlxb201501008 |
[ 刘小康, 饶志国, 张肖剑, 等. 天山地区大气降水氧同位素的影响因素及其对西风环流变化的指示意义. 地理学报, 2015, 70(1): 97-109.]
doi: 10.11821/dlxb201501008 |
|
[17] | Song Xianfang, Tang Yu, Zhang Yinghua, et al. Using stable isotopes to study vapor transport of continuous precipitation in Beijing. Advances in Water Science, 2017, 28(4): 488-495. |
[ 宋献方, 唐瑜, 张应华, 等. 北京连续降水水汽输送差异的同位素示踪. 水科学进展, 2017, 28(4): 488-495.] | |
[18] |
Meng Hongfei, Zhang Mingjun, Wang Shengjie, et al. Precipitation isotope characteristics and water vapor source analysis in the upper reaches of the Heihe River. Journal of Glaciology and Geocryology, 2020, 42(3): 937-951.
doi: 10.7522/j.issn.1000-0240.2020.0068 |
[ 孟鸿飞, 张明军, 王圣杰, 等. 黑河上游降水同位素特征及其水汽来源分析. 冰川冻土, 2020, 42(3): 937-951.]
doi: 10.7522/j.issn.1000-0240.2020.0068 |
|
[19] | Du Kang, Zhang Beiying. Stable isotope characteristics and water vapor sources of precipitation in the Pearl River Basin. Journal of China Hydrology, 2020, 40(6): 75-82. |
[ 杜康, 张北赢. 珠江流域降水稳定同位素特征及水汽来源. 水文, 2020, 40(6): 75-82.] | |
[20] | Zhou Hui. The multi-temporal scale changes and influencing factors of stable isotopes in atmospheric precipitation in China[D]. Changsha: Hunan Normal University, 2019. |
[ 周慧. 我国大气降水中稳定同位素的多时空尺度变化及影响因素分析[D]. 长沙: 湖南师范大学, 2019.] | |
[21] | Sun Congjian, Zheng Zhenjing, Li Xinong, et al. Spatio-temporal distribution of the potential evapotranspiration and its controlling factors in the tableland protected region of the Loess Plateau. Journal of Natural Resources, 2020, 35(4): 857-868. |
[ 孙从建, 郑振婧, 李新功, 等. 黄土塬面保护区潜在蒸发量时空变化及其与气象、环流因子关系分析. 自然资源学报, 2020, 35(4): 857-868.] | |
[22] | Liang Xiao, Yang Pingguo, Yao Jiao, et al. Environmental magnetic record of East Asian summer monsoon variability on the Chinese Loess Plateau since 16 ka BP. Acta Geographica Sinica, 2021, 76(3): 539-549. |
[ 梁潇, 杨萍果, 姚娇, 等. 16 ka以来黄土高原东亚夏季风变化的环境磁学记录. 地理学报, 2021, 76(3): 539-549.]
doi: 10.11821/dlxb202103004 |
|
[23] | Stewart M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research: Atmospheres, 1975, 80(9): 1133-1146. |
[24] | Wang S J, Zhang M J, Che Y, et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls. Journal of Hydrometeorology, 2016, 17(7): 1973-1984. |
[25] |
Wang S J, Jiao R, Zhang M J, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China. Journal of Geophysical Research: Atmospheres, 2021, 126(7). DOI: 10.1029/2020JD033075.
doi: 10.1029/2020JD033075 |
[26] |
Xiao H Y, Zhang M J, Zhang Y, et al. Sub-cloud secondary evaporation in precipitation stable isotopes based on the Stewart Model in Yangtze River Basin. Atmosphere, 2021, 12(5): 575. DOI: 10.3390/atmos12050575.
doi: 10.3390/atmos12050575 |
[27] | Kong Yanlong. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[D]. Beijing: University of Chinese Academy of Sciences, 2013. |
[ 孔彦龙. 基于氚盈余的内陆干旱区水汽再循环研究[D]. 北京: 中国科学院大学, 2013.] | |
[28] | Salamalikis V, Argiriou A A, Dotsika E. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Science of the Total Environment, 2016, 544: 1059-1072. |
[29] |
Wang S J, Du M X, Zhang M J, et al. Precipitation isotopes associated with the duration and distance of moisture trajectory in a westerly-dominant setting. Water, 2019, 11(12): 2434. DOI: 10.3390/w11122434.
doi: 10.3390/w11122434 |
[30] | Che Cunwei, Zhang Mingjun, Wang Shengjie, et al. Influence of sub-cloud secondary evaporation on stable isotope composition in precipitation in the Yellow River Basin. Arid Land Geography, 2019, 42(4): 790-798. |
[ 车存伟, 张明军, 王圣杰, 等. 黄河流域降水稳定同位素的云下二次蒸发效应. 干旱区地理, 2019, 42(4): 790-798.] | |
[31] | Huang Yimin, Sun Jia, Huang Yibin, et al. Spatial-temporal distribution of δD in atmospheric water vapor by using TES retrievals over middle to low latitudes in Asia. Acta Geographica Sinica, 2014, 69(11): 1661-1672. |
[ 黄一民, 孙葭, 黄一斌, 等. 基于TES反演数据的亚洲中低纬度地区大气水汽δD的时空分布. 地理学报, 2014, 69(11): 1661-1672.]
doi: 10.11821/dlxb201411007 |
|
[32] | Yang Z F, Huang W Y, Qiu T P, et al. Interannual variation and regime shift of the evaporative moisture sources for winter time precipitation over southern China. Journal of Geophysical Research: Atmospheres, 2018, 123(23): 13168-13185. |
[33] | Zheng Shuhui, Hou Fagao, Ni Baoling. Hydrogen and oxygen stable isotopes of atmospheric precipitation in China. Chinese Science Bulletin, 1983, 28(13): 801-806. |
[ 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究. 科学通报, 1983, 28(13): 801-806.] | |
[34] | Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics of δ18O in precipitation over Northwest China and its water vapor sources. Acta Geographica Sinica, 2008, 63(1): 12-22. |
[ 柳鉴容, 宋献方, 袁国富, 等. 西北地区大气降水 δ18O的特征及水汽来源. 地理学报, 2008, 63(1): 12-22.] | |
[35] | Xu Xiuting, Jia Wenxiong, Zhu Guofeng, et al. Stable isotope characteristics and vapor source of precipitation in the south and north slopes of Wushaoling Mountain. Environmental Science, 2020, 41(1): 155-165. |
[ 徐秀婷, 贾文雄, 朱国锋, 等. 乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比. 环境科学, 2020, 41(1): 155-165.] | |
[36] | Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468. |
[37] | Jin Xiaogang, Zhang Mingjun, Wang Shengjie, et al. Effect of below-cloud secondary evaporation in precipitations over the Loess Plateau based on the stable isotopes of hydrogen and oxygen. Environmental Science, 2015, 36(4): 1241-1248. |
[ 靳晓刚, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄土高原云下二次蒸发效应. 环境科学, 2015, 36(4): 1241-1248.] | |
[38] | Song Yang, Wang Shengjie, Zhang Mingjun, et al. Precipitation stable isotope characteristics and water vapor sources in eastern Tarim River Basin. Environmental Science, 2022, 43(1): 199-209. |
[ 宋洋, 王圣杰, 张明军, 等. 塔里木河流域东部降水稳定同位素特征与水汽来源. 环境科学, 2022, 43(1): 199-209.] | |
[39] |
Xie Linhuan, Jiang Tao, Cao Yingjie, et al. Characteristics of hydrogen and oxygen isotopes in precipitation and runoff and flood hydrograph separation in an urbanized catchment. Acta Geographica Sinica, 2019, 74(9): 1733-1744.
doi: 10.11821/dlxb201909003 |
[ 谢林环, 江涛, 曹英杰, 等. 城镇化流域降水径流氢氧同位素特征及洪水径流分割. 地理学报, 2019, 74(9): 1733-1744.]
doi: 10.11821/dlxb201909003 |
|
[40] |
Xiao Hanyu, Zhang Mingjun, Wang Shengjie, et al. Sub-cloud secondary evaporation effect of precipitation isotope in Shaanxi-Gansu-Ningxia region, China. Chinese Journal of Applied Ecology, 2020, 31(11): 3814-3822.
doi: 10.13287/j.1001-9332.202011.013 |
[ 肖涵余, 张明军, 王圣杰, 等. 陕甘宁地区降水同位素云下二次蒸发效应. 应用生态学报, 2020, 31(11): 3814-3822.]
doi: 10.13287/j.1001-9332.202011.013 |
[1] | LI Dawei, DUAN Keqin, SHI Peihong, LI Shuangshuang, SHANG Wei, ZHANG Zhaopeng. Vertical variation of precipitation in the central Qinling Mountains [J]. Acta Geographica Sinica, 2022, 77(7): 1762-1774. |
[2] | MA Beibei, DANG Xing, YUAN Shuimei, XUE Dongqian, SONG Yongyong. Location selection and spatial justice of polluting enterprises in underdeveloped areas [J]. Acta Geographica Sinica, 2022, 77(4): 1009-1027. |
[3] | ZHANG Yihui, LIU Changming, LIANG Kang, LYU Jinxin. Spatio-temporal variation of precipitation in the Yarlung Zangbo river basin [J]. Acta Geographica Sinica, 2022, 77(3): 603-618. |
[4] | XUE Fan, ZHANG Xiaoping, ZHANG Lu, LIU Baoyuan, YANG Qinke, YI Haijie, HE Liang, ZOU Yadong, HE Jie, XU Xiaoming, LYU Du. Attribution recognition of streamflow and sediment changes based on the Budyko hypothesis and fractal theory: A case study in the Beiluo River Basin [J]. Acta Geographica Sinica, 2022, 77(1): 79-92. |
[5] | LIU Zhilin, DING Yinping, JIAO Yuanmei. Spatiotemporal patterns of precipitation changes and their impacts on food supply in Southwest China from 1988 to 2018: A case study in Yunnan Province [J]. Acta Geographica Sinica, 2021, 76(9): 2297-2311. |
[6] | HU Sheng, QIU Haijun, WANG Ninglian, CUI Yifei, CAO Mingming, WANG Jiading, WANG Xingang. The influence of terrain on loess landslides in Loess Plateau [J]. Acta Geographica Sinica, 2021, 76(11): 2697-2709. |
[7] | ZHAO Xueyan, MA Pingyi, LI Wenqing, DU Yuxuan. Spatiotemporal changes of supply and demand relationships of ecosystem services in the Loess Plateau [J]. Acta Geographica Sinica, 2021, 76(11): 2780-2796. |
[8] | WEN Qingzhi, SUN Peng, ZHANG Qiang, YAO Rui. A multi-scalar drought index for global warming: The non-stationary standardized precipitation evaporation index (NSPEI) and spatio-temporal patterns of future drought in China [J]. Acta Geographica Sinica, 2020, 75(7): 1465-1482. |
[9] | ZHANG Kun, LYU Yihe, FU Bojie, YIN Lichang, YU Dandan. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau [J]. Acta Geographica Sinica, 2020, 75(5): 949-960. |
[10] | LI Shuangshuang, WANG Chengbo, YAN Junping, LIU Xianfeng. Variability of the event-based extreme precipitation in the south and north Qinling Mountains [J]. Acta Geographica Sinica, 2020, 75(5): 989-1007. |
[11] | LU Daming, YANG Xinjun, SHI Yuzhong, WANG Ziqiao. Rural regime shifts and transformation development on the Loess Plateau [J]. Acta Geographica Sinica, 2020, 75(2): 348-364. |
[12] | WANG Fang, ZHANG Jintao. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement [J]. Acta Geographica Sinica, 2020, 75(1): 25-40. |
[13] | HE Liye, CHENG Shanjun, MA Ning, GUO Jun. Intraseasonal evolution of the key areas of precipitation in the Haihe River Basin and quantitative analysis of its associated atmospheric circulation during summer [J]. Acta Geographica Sinica, 2020, 75(1): 41-52. |
[14] | LIU Xiaoyan, LIU Changming, DANG Suzhen. Effects of rainfall intensity on sediment concentration in loess hilly region of China [J]. Acta Geographica Sinica, 2019, 74(9): 1723-1732. |
[15] | XIE Linhuan, JIANG Tao, CAO Yingjie, ZHANG Desheng, LI Kun, TANG Changyuan. Characteristics of hydrogen and oxygen isotopes in precipitation and runoff and flood hydrograph separation in an urbanized catchment [J]. Acta Geographica Sinica, 2019, 74(9): 1733-1744. |