Acta Geographica Sinica ›› 2022, Vol. 77 ›› Issue (7): 1730-1744.doi: 10.11821/dlxb202207011
• Climate Change and Planet Geomorphology • Previous Articles Next Articles
MO Xingguo1,2(), LIU Suxia1,2, HU Shi1
Received:
2021-07-23
Revised:
2022-04-07
Online:
2022-07-25
Published:
2022-09-13
Supported by:
MO Xingguo, LIU Suxia, HU Shi. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River[J].Acta Geographica Sinica, 2022, 77(7): 1730-1744.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Liu N, Sun P S, Caldwell P V, et al. Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. Journal of Hydrology, 2020, 590: 125449. DOI: 10.1016/j.jhydrol.2020.125449.
doi: 10.1016/j.jhydrol.2020.125449 |
[2] | Hilker T, Natsagdorj E, Waring R H, et al. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Global Change Biology, 2014, 20(2): 418-428. |
[3] |
Lu X Y, Kelsey K C, Yan Y, et al. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere, 2017, 8(1): e01656. DOI: 10.1002/ecs2.1656.
doi: 10.1002/ecs2.1656 |
[4] |
Dennedy-Frank P J, Gorelick S M,. Insights from watershed simulations around the world: Watershed service-based restoration does not significantly enhance streamflow. Global Environmental Change, 2019, 58: 101938. DOI: 10.1016/j.gloenvcha.2019.101938.
doi: 10.1016/j.gloenvcha.2019.101938 |
[5] |
Filoso S, Bezerra M O, Weiss K C B, et al. Impacts of forest restoration on water yield: A systematic review. PLOS ONE, 2017, 12(8): e0183210. DOI: 10.1371/journal.pone.0183210.
doi: 10.1371/journal.pone.0183210 |
[6] |
Bai P, Liu X, Zhang Y, et al. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resources Research, 2020, 56: e2019WR027019. DOI: 10.1029/2019WR027019.
doi: 10.1029/2019WR027019 |
[7] | Mastrotheodoros T, Pappas C, Molnar P, et al. More green and less blue water in the Alps during warmer summers. Nature Climate Change, 2020, 10(2): 155-161. |
[8] | Cuo L, Zhang Y X, Wang Q C, et al. Climate change on the northern Tibetan Plateau during 1957-2009: Spatial patterns and possible mechanisms. Journal of Climate, 2013, 26(1): 85-109. |
[9] |
Meng Xianhong, Chen Hao, Li Zhaoguo, et al. Review of climate change and its environmental influence on the Three-River regions. Plateau Meteorology, 2020, 39(6): 1133-1143.
doi: 10.7522/j.issn.1000-0534.2019.00144 |
[ 孟宪红, 陈昊, 李照国, 等. 三江源区气候变化及其环境影响研究综述. 高原气象, 2020, 39(6): 1133-1143.]
doi: 10.7522/j.issn.1000-0534.2019.00144 |
|
[10] |
Yin Yunhe, Wu Shaohong, Zhao Dongsheng, et al. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010. Geographical Research, 2016, 35(1): 49-57.
doi: 10.11821/dlyj201601005 |
[ 尹云鹤, 吴绍洪, 赵东升, 等. 过去30年气候变化对黄河源区水源涵养量的影响. 地理研究, 2016, 35(1): 49-57.]
doi: 10.11821/dlyj201601005 |
|
[11] | Zheng Ziyan, Lv Meixia, Ma Zhuguo. Climate, hydrology, and vegetation coverage changes in source region of Yellow River and countermeasures for challenges. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 61-72. |
[ 郑子彦, 吕美霞, 马柱国. 黄河源区气候水文和植被覆盖变化及面临问题的对策建议. 中国科学院院刊, 2020, 35(1): 61-72.] | |
[12] | Lan Yongchao, Zhu Yuntong, Liu Gensheng, et al. Study of the seasonal characteristics and regional differences of climate change in source regions of the Yellow River. Journal of Glaciology and Geocryology, 2016, 38(3): 741-749. |
[ 蓝永超, 朱云通, 刘根生, 等. 黄河源区气候变化的季节特征与区域差异研究. 冰川冻土, 2016, 38(3): 741-749.] | |
[13] | Wang Zhigui, Wang Suping, Wang Jianbing, et al. Study on the variation characteristics of reference crop evapotranspiration in recent 40 years in source region of Yellow River. Agricultural Research in the Arid Areas, 2013, 31(6): 169-173, 189. |
[ 汪治桂, 王素萍, 王建兵, 等. 黄河源区近40年参考作物蒸散量变化特征研究. 干旱地区农业研究, 2013, 31(6): 169-173, 189.] | |
[14] | Qin Y, Yang D W, Gao B, et al. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Science of the Total Environment, 2017, 605: 830-841. |
[15] | Xu S Q, Yu Z B, Yang C G, et al. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agricultural and Forest Meteorology, 2018, 263: 118-129. |
[16] | Wang Daoxi, Tian Shimin, Jiang Siqi, et al. Research progress of the evolution of runoff in the source area of the Yellow River. Yellow River, 2020, 42(9): 90-95. |
[ 王道席, 田世民, 蒋思奇, 等. 黄河源区径流演变研究进展. 人民黄河, 2020, 42(9): 90-95.] | |
[17] | Li Hui, Xiao Pengfeng, Feng Xuezhi, et al. Lake changes in spatial evolution and area in source region of Three Rivers in recent 30 years. Journal of Lake Sciences, 2010, 22(6): 862-873. |
[ 李晖, 肖鹏峰, 冯学智, 等. 近30年三江源地区湖泊变化图谱与面积变化. 湖泊科学, 2010, 22(6): 862-873.] | |
[18] | Duan Shuiqiang, Fan Shixiong, Cao Guangchao, et al. The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014. Journal of Glaciology and Geocryology, 2015, 37(3): 745-756. |
[ 段水强, 范世雄, 曹广超, 等. 1976-2014年黄河源区湖泊变化特征及成因分析. 冰川冻土, 2015, 37(3): 745-756.] | |
[19] |
Zhou H, Liu S, Hu S, et al. Retrieving dynamics of the surface water extent in the upper reach of Yellow River. Sciences of the Total Environment, 2021, 800: 149348. DOI: 10.1016/j.scitotenv.2021.149348.
doi: 10.1016/j.scitotenv.2021.149348 |
[20] | Jiang Zongli, Liu Shiyin, Guo Wanqin, et al. Recent surface elevation changes of three representative glaciers in Anyêmaqên Mountains, source region of Yellow River. Journal of Glaciology and Geocryology, 2018, 40(2): 231-237. |
[ 蒋宗立, 刘时银, 郭万钦, 等. 黄河源区阿尼玛卿山典型冰川表面高程近期变化. 冰川冻土, 2018, 40(2): 231-237.] | |
[21] |
Jin H J, He R X, Cheng G D, et al. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 2009, 4(4): 045206. DOI: 10.1088/1748-9326/4/4/045206.
doi: 10.1088/1748-9326/4/4/045206 |
[22] | Liu W B, Wang L, Sun F B, et al. Snow hydrology in the upper Yellow River Basin under climate change: A land surface modeling perspective. Journal of Geophysical Research: Atmospheres, 2018, 123(22): 12676-12691. |
[23] | Meng F C, Su F G, Li Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2909-2931. |
[24] | Qian S, Fu Y, Pan F. Climate change tendency and grassland vegetation response during the growth season in Three-River Source Region. Science China: Earth Science, 2010, 53(10): 1506-1512. |
[25] | Chen Qiong, Zhang Yili, Liu Fenggui, et al. A review of land use change and its influence in the source region of the Yellow River. Resources Sciences, 2020, 42(3): 446-459. |
[ 陈琼, 张镱锂, 刘峰贵, 等. 黄河流域河源区土地利用变化及其影响研究综述. 资源科学, 2020, 42(3): 446-459.]
doi: 10.18402/resci.2020.03.04 |
|
[26] | Jin Huijun, Wang Shaolin, Lv Lanzhi, et al. Features and degradation of frozen ground in the sources area of the Yellow River, China. Journal of Glaciology and Geocryology, 2010, 32(1): 10-17. |
[ 金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势. 冰川冻土, 2010, 32(1): 10-17.] | |
[27] | Kuang X X, Jiao J J. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3979-4007. |
[28] | Mo X G, Liu S X. Simulating evapotranspiration and photosynthesis of winter wheat over the entire growing season. Agricultural and Forest Meteorology, 2001, 109: 203-222. |
[29] | Mo X G, Liu S X, Lin Z H, et al. Simulation the spatial and temporal variation of evapotranspiration in the Lushi Catchment. Journal of Hydrology, 2004, 285: 125-142. |
[30] |
Mo X G, Beven K J, Liu S X, et al. Long-term water budget estimation with the modified distributed model-LISFLOOD-WB over the Lushi basin, China. Meteorology Atmospheric Physics, 2005, 90. DOI: 10.1007/s00703-004-0084-9.
doi: 10.1007/s00703-004-0084-9 |
[31] | Mo X G, Liu S X, Meng D J. Climate variability impacts on evapotranspiration and primary productivity by assimilating remotely sensed data with a process-based model over Songhua River Basin. International Journal of Climatology, 2014, 34: 1945-1963. |
[32] |
Mo X G, Liu S X, Lin Z H, et al. Terrestrial evapotranspiration and gross primary productivity over China: Spatial-temporal patterns and control. Ecohydrology, 2018, 11(4): e1951. DOI: 10.1002/eco.1951.
doi: 10.1002/eco.1951 |
[33] | Liu S X, Deng S S, Mo X G, et al. Indexing the relationship between polar motion and water mass change in a giant river basin. Science China Earth Sciences, 2018, 61: 1065-1077. |
[34] | Yao Yubi, Yang Jinhu, Xiao Guoju, et al. Change feature of net primary productivity of natural vegetation and its impact factor in the source region of Yellow River in recent 50 years. Plateau Meteorology, 2011, 30(6): 1594-1603. |
[ 姚玉璧, 杨金虎, 肖国举, 等. 近50年黄河源区植被净初级生产力变化特征及其影响因素. 高原气象, 2011, 30(6): 1594-1603.] | |
[35] | Deng M S, Meng X H, Li Z G, et al. Responses of soil moisture to regional climate change over the Three Rivers Source Region on the Tibetan Plateau. International Journal of Climatology, 2020, 40(4): 2403-2417. |
[36] |
Zhao Y, Zhou T. Interannual variability of precipitation recycle ratio over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2021, 126: e2020JD033733. DOI: 10.1029/2020JD033733.
doi: 10.1029/2020JD033733 |
[37] |
Cheng L, Zhang L, Wang Y P, et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 2017, 8: 110. DOI: 10.1038/s41467-017-00114-5.
doi: 10.1038/s41467-017-00114-5 pmid: 28740122 |
[1] | GAO Jiangbo, LIU Lulu, GUO Linghui, SUN Dongqi, LIU Wanlu, HOU Wenjuan, WU Shaohong. Synergic effects of climate change and phenological variation on agricultural production and its risk pattern in black soil region of Northeast China [J]. Acta Geographica Sinica, 2022, 77(7): 1681-1700. |
[2] | MA Zhongxue, CUI Huijuan, GE Quansheng. Prediction of net primary productivity change pattern in China based on vegetation dynamic models [J]. Acta Geographica Sinica, 2022, 77(7): 1821-1836. |
[3] | LI Jiahui, HUANG Lin, CAO Wei. The influencing mechanism of ecological asset gains and losses at the county level in China and its optimization and promotion paths [J]. Acta Geographica Sinica, 2022, 77(5): 1260-1274. |
[4] | LIU Changming, LIU Xuan, YANG Yafeng, WANG Hongrui. A discussion on some issues of hydro-geographical research [J]. Acta Geographica Sinica, 2022, 77(1): 3-15. |
[5] | LIU Haolong, ZHOU Yu, LIU Jun, DAI Junhu, GE Quansheng, QI Xiaobo. Characteristics and scenario simulation of the ice-sports season in Beijing Beihai Park under climate change [J]. Acta Geographica Sinica, 2022, 77(1): 35-50. |
[6] | ZHANG Chenbin, WU Duo, CHEN Xuemei, YUAN Zijie, CHEN Fahu. A preliminary study of the strata and age of ancient agricultural terraces in the Ganjia Basin, northeastern Tibetan Plateau [J]. Acta Geographica Sinica, 2022, 77(1): 66-78. |
[7] | DING Rui, SHI Wenjiao. Quantitative evaluation of the effects of climate change on cereal yields of Tibet during 1993-2017 [J]. Acta Geographica Sinica, 2021, 76(9): 2174-2186. |
[8] | XU Zhiwei, LU Huayu. Aeolian environmental change studies in the Mu Us Sandy Land, north-central China: Theory and recent progress [J]. Acta Geographica Sinica, 2021, 76(9): 2203-2223. |
[9] | BAO Kunshan, YANG Ting, XIAO Xiang, JIA Lin, WANG Guoping, SHEN Ji. Atmospheric dust deposition history over the past 150 a recorded by mountain peatlands in northeast China [J]. Acta Geographica Sinica, 2021, 76(9): 2283-2296. |
[10] | YIN Yunhe, MA Danyang, DENG Haoyu, WU Shaohong. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China [J]. Acta Geographica Sinica, 2021, 76(7): 1605-1617. |
[11] | HE Jin, LIU Yan, TIAN Yanguo, WANG Ze, XIAO Xin, JIANG Feng, LIU Tao, SUN Qianli, CHEN Jing, LI Maotian, CHEN Zhongyuan. Mid-Late Holocene climate change and its impact on the agriculture-pastoralism evolution in the West Liaohe Basin [J]. Acta Geographica Sinica, 2021, 76(7): 1618-1633. |
[12] | LI Cheng, ZHUANG Dafang, HE Jianfeng, WEN Kege. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia [J]. Acta Geographica Sinica, 2021, 76(7): 1634-1648. |
[13] | AMANTAI Nigenare, DING Jianli, GE Xiangyu, BAO Qingling. Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basinfrom 1960 to 2017 [J]. Acta Geographica Sinica, 2021, 76(5): 1177-1192. |
[14] | WANG Keyi, LIU Xiaohong, ZENG Xiaomin, XU Guobao, ZHANG Lingnan, LI Chunyue. Stable nitrogen isotope in tree rings: Progresses, problems and prospects [J]. Acta Geographica Sinica, 2021, 76(5): 1193-1205. |
[15] | ZHANG Yongqiang, KONG Dongdong, ZHANG Xuanze, TIAN Jing, LI Congcong. Impacts of vegetation changes on global evapotranspiration in the period 2003-2017 [J]. Acta Geographica Sinica, 2021, 76(3): 584-594. |