Acta Geographica Sinica ›› 2022, Vol. 77 ›› Issue (7): 1681-1700.doi: 10.11821/dlxb202207008
• Black Soil Conservation and Utilization • Previous Articles Next Articles
GAO Jiangbo1(), LIU Lulu1, GUO Linghui2(
), SUN Dongqi3, LIU Wanlu1,4, HOU Wenjuan1, WU Shaohong1,4
Received:
2021-10-29
Revised:
2022-07-11
Online:
2022-07-25
Published:
2022-09-13
Contact:
GUO Linghui
E-mail:gaojiangbo@igsnrr.ac.cn;guolinghui@hpu.edu.cn
Supported by:
GAO Jiangbo, LIU Lulu, GUO Linghui, SUN Dongqi, LIU Wanlu, HOU Wenjuan, WU Shaohong. Synergic effects of climate change and phenological variation on agricultural production and its risk pattern in black soil region of Northeast China[J].Acta Geographica Sinica, 2022, 77(7): 1681-1700.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Su Y, Gabrielle B, Makowski D. The impact of climate change on the productivity of conservation agriculture. Nature Climate Change, 2021, 11(7): 628-633. |
[2] |
Chen J, Liu Y J, Pan T, et al. Global socioeconomic exposure of heat extremes under climate change. Journal of Cleaner Production, 2020, 277: 123275. DOI: 10.1016/j.jclepro.2020.123275.
doi: 10.1016/j.jclepro.2020.123275 |
[3] |
Byers E, Gidden M, Leclère D, et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13(5): 055012. DOI: 10.1088/1748-9326/aabf45.
doi: 10.1088/1748-9326/aabf45 |
[4] |
Liu M H, Xu X, Jiang X, et al. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Science of the Total Environment, 2020, 703: 134621. DOI: 10.1016/j.scitotenv.2019. 134621.
doi: 10.1016/j.scitotenv.2019. 134621 |
[5] | Fujimori S, Hasegawa T, Krey V, et al. A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2(5): 386-396. |
[6] | Liu B, Martre P, Ewert F, et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Global Change Biology, 2018, 25(4): 1428-1444. |
[7] |
Ray D K, West P C, Clark M, et al. Climate change has likely already affected global food production. PLOS ONE, 2019, 14(5): e0217148. DOI: 10.1371/journal.pone.0217148.
doi: 10.1371/journal.pone.0217148 |
[8] | Osborne T, Rose G, Wheeler T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agricultural and Forest Meteorology, 2013, 170: 183-194. |
[9] |
Delincé J, Ciaian P, Witzke H P. Economic impacts of climate change on agriculture: The AgMIP approach. Journal of Applied Remote Sensing, 2015, 9(1): 097099. DOI: 10.1117/1.JRS.9.097099.
doi: 10.1117/1.JRS.9.097099 |
[10] | Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[11] |
Arnell N W, Lowe J A, Challinor A J, et al. Global and regional impacts of climate change at different levels of global temperature increase. Climatic Change, 2019, 155(3): 377-391.
doi: 10.1007/s10584-019-02464-z |
[12] |
Hou P, Liu Y E, Liu W M, et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation and Recycling, 2021, 174: 105811. DOI: 10.1016/j.resconrec.2021.105811.
doi: 10.1016/j.resconrec.2021.105811 |
[13] |
Liu B, Asseng S, Muller C, et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6(12): 1130. DOI: 10.1038/NCLIMATE3115.
doi: 10.1038/NCLIMATE3115 |
[14] | Leng G Y, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 2019, 654: 811-821. |
[15] | Liu J, Wang B, Cane M A, et al. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 2013, 493(7434): 656-659. |
[16] | Rosenzweig C, Elliott J, Deryng D, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 2013, 111(9): 3268-3273. |
[17] |
Kukal M S, Irmak S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. Great Plains agricultural production. Scientific Reports, 2018, 8: 3450. DOI: 10.1038/s41598-018-21848-2.
doi: 10.1038/s41598-018-21848-2 |
[18] | Lin Y M, Wu W X, Ge Q S. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China. Journal of the Science of Food and Agriculture, 2015, 95(14): 2838-2849. |
[19] | Lam H M, Remais J, Fung M C, et al. Food supply and food safety issues in China. The Lancet, 2013, 381(9882): 2044-2053. |
[20] |
Sun T, Li Z Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Research, 2019, 241: 107558. DOI: 10.1016/j.fcr.2019.107558.
doi: 10.1016/j.fcr.2019.107558 |
[21] |
Lv Y J, Wang Y J, Wang L C, et al. Straw return with reduced nitrogen fertilizer maintained maize high yield in northeast China. Agronomy, 2019, 9(5): 229. DOI: 10.3390/agronomy9050229.
doi: 10.3390/agronomy9050229 |
[22] | Li H, Feng W T, He X H, et al. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Journal of Integrative Agriculture, 2017, 16(4): 937-946. |
[23] | Xu X Z, Xu Y, Chen S C, et al. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environmental Science & Policy, 2010, 13(8): 793-800. |
[24] |
Jiang R, He W T, Zhou W, et al. Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Computers and Electronics in Agriculture, 2019, 166: 104988. DOI: 10.1016/j.compag.2019.104988.
doi: 10.1016/j.compag.2019.104988 |
[25] |
Liu Zhijuan, Yang Xiaoguang, Wang Wenfeng, et al. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change. Chinese Journal of Applied Ecology, 2009, 20(9): 2199-2206.
pmid: 20030143 |
[ 刘志娟, 杨晓光, 王文峰, 等. 气候变化背景下我国东北三省农业气候资源变化特征, 应用生态学报, 2009, 20(9): 2199-2206.]
pmid: 20030143 |
|
[26] |
Zhang H, Zhou G S, Liu D L, et al. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Science of the Total Environment, 2019, 666: 126-138.
doi: 10.1016/j.scitotenv.2019.01.415 |
[27] |
Piao J L, Chen W, Chen S F, et al. Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 2021, 169(3/4): 35. DOI: 10.1007/s10584-021-03286-8.
doi: 10.1007/s10584-021-03286-8 |
[28] | Ari G N, Bao Y B, Asi H F, et al. Impact of global warming on meteorological drought: A case study of the Songliao Plain, China. Theoretical and Applied Climatology, 2021, 146(3/4): 1315-1334. |
[29] | Li Z G, Tan J Y, Tang P Q, et al. Spatial distribution of maize in response to climate change in Northeast China during 1980-2010. Journal of Geographical Sciences, 2016, 26(1): 3-14. |
[30] |
Zhang Y, Zhao Y X, Sun Q. Increasing maize yields in Northeast China are more closely associated with changes in crop timing than with climate warming. Environmental Research Letters, 2021, 16(5): 054052. DOI: 10.1088/1748-9326/abe490.
doi: 10.1088/1748-9326/abe490 |
[31] | Chu Z, Guo J P, Zhao J F. Impacts of future climate change on agroclimatic resources in Northeast China. Journal of Geographical Sciences, 2017, 27(9): 1044-1058. |
[32] |
Wang X Y, Zhou Y K, Wen R H, et al. Mapping spatiotemporal changes in vegetation growth peak and the response to climate and spring phenology over northeast China. Remote Sensing, 2020, 12(23): 3977. DOI: 10.3390/rs12233977.
doi: 10.3390/rs12233977 |
[33] |
Lv S, Yang X G, Lin X M, et al. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agricultural and Forest Meteorology, 2015, 205. DOI: 10.1016/j.agrformet.2015.02.008.
doi: 10.1016/j.agrformet.2015.02.008 |
[34] | Lin Y M, Feng Z M, Wu W X, et al. Potential impacts of climate change and adaptation on maize in northeast China. Agronomy Journal, 2017, 109(4): 1476-1490. |
[35] |
Xiao D P, Zhang Y, Bai H Z, et al. Trends and climate response in the phenology of crops in northeast China. Frontiers in Earth Science, 2021(9): 811621. DOI: 10.3389/feart.2021.811621.
doi: 10.3389/feart.2021.811621 |
[36] | He B, Wu J J, Lyu A F, et al. Quantitative assessment and spatial characteristic analysis of agricultural drought risk in China. Natural Hazards, 2013, 66(2): 155-166. |
[37] |
You N S, Dong J W, Huang J X, et al. The 10 m crop type maps in Northeast China during 2017-2019. Scientific Data, 2021, 8: 41. DOI: 10.1038/s41597-021-00827-9.
doi: 10.1038/s41597-021-00827-9 |
[38] | Liu Baoyuan, Zhang Ganlin, Xie Yun, et al. Delineating the black soil region and typical black soil region of northeastern China. Chinese Science Bulletin, 2021, 66(1): 96-106. |
[ 刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界. 科学通报, 2021, 66(1): 96-106.] | |
[39] |
Zhang Y, Xiao X M, Wu X C, et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 2017, 4: 170165. DOI: 10.1038/sdata.2017.165.
doi: 10.1038/sdata.2017.165 |
[40] |
Xiong W, Holman I, Lin E D, et al. Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environmental Research Letters, 2012, 7(4): 044014. DOI: 10.1088/1748-9326/7/4/044014.
doi: 10.1088/1748-9326/7/4/044014 |
[41] | Xiong W, Asseng S, Hoogenboom G, et al. Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nature Food, 2020, 1(1): 63-69. |
[42] | Wu C Y, Hou X H, Peng D L, et al. Land surface phenology of China's temperate ecosystems over 1999-2013: Spatial-temporal patterns, interaction effects, covariation with climate and implications for productivity. Agricultural and Forest Meteorology, 2016, 216: 177-187. |
[43] |
Guo L H, Gao J B, Hao C Y, et al. Winter wheat green-up date variation and its diverse response on the hydrothermal conditions over the North China Plain, using MODIS time-series data. Remote Sensing, 2019, 11(13): 1593. DOI: 10.3390/rs11131593.
doi: 10.3390/rs11131593 |
[44] | Schleussner C F, Lissner T K, Fischer E M, et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ℃ and 2 ℃. Earth System Dynamics, 2016, 7(2): 327-351. |
[45] | Wu S H, Liu L L, Gao J B, et al. Integrate risk from climate change in China under global warming of 1.5 and 2.0 °C. Earth's Future, 2019, 7(12): 1307-1322. |
[46] |
Luo Y C, Zhang Z, Li Z Y, et al. Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environmental Research Letters, 2020, 15(7): 074003. DOI: 10.1088/1748-9326/ab80f0.
doi: 10.1088/1748-9326/ab80f0 |
[47] | Hay L E, Wilby R L, Leavesley G H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 2000, 36(2): 387-397. |
[48] | Deng Guo, Wang Angsheng, Zhou Yushu, et al. Geographical distribution of China's grain yield risk area. Journal of Natural Resources, 2002, 17(2): 210-215. |
[ 邓国, 王昂生, 周玉淑, 等. 中国粮食产量不同风险类型的地理分布. 自然资源学报, 2002, 17(2): 210-215.] | |
[49] |
Wu Shaohong, Liu Lulu, Liu Yanhua, et al. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road. Acta Geographica Sinica, 2018, 73(7): 1214-1225.
doi: 10.11821/dlxb201807003 |
[ 吴绍洪, 刘路路, 刘燕华, 等. “一带一路”陆域地理格局与环境变化风险. 地理学报, 2018, 73(7): 1214-1225.]
doi: 10.11821/dlxb201807003 |
|
[50] | Li Zhengguo, Tang Huajun, Yang Peng, et al. Identification and application of seasonality parameters of crop growing season in northeast China based on NDVI time series data. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(5): 882-892. |
[ 李正国, 唐华俊, 杨鹏, 等. 基于时序植被指数的东北地区耕地生长季特征识别与应用研究. 北京大学学报(自然科学版), 2011, 47(5): 882-892.] | |
[51] | Gao J B, Liu L L, Wu S H. Hazards of extreme events in China under different global warming targets. Big Earth Data, 2020, 4(2): 153-174. |
[52] |
Li Zhe, Ding Yongjian, Chen Aijiao, et al. Characteristics of warming hiatus of the climate change in Northwest China from 1960 to 2019. Acta Geographica Sinica, 2020, 75(9): 1845-1859.
doi: 10.11821/dlxb202009003 |
[ 李哲, 丁永建, 陈艾姣, 等. 1960-2019年西北地区气候变化中的Hiatus现象及特征. 地理学报, 2020, 75(9): 1845-1859.]
doi: 10.11821/dlxb202009003 |
|
[53] | Jeong S J, Ho C H, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 2011, 17(7): 2385-2399. |
[54] | Liu Z J, Wu C Y, Liu Y S, et al. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 81-91. |
[55] | Wu Jinhua, Sheng Zhilu, Du Jiaqiang, et al. Spatiotemporal change patterns of temperature and precipitation in Northeast China from 1956 to 2017. Research of Soil and Water Conservation, 2021, 28(3): 340-347, 415. |
[ 吴金华, 盛芝露, 杜加强, 等. 1956-2017年东北地区气温和降水的时空变化特征. 水土保持研究, 2021, 28(3): 340-347, 415.] | |
[56] | Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 2015, 21(10): 3647-3656. |
[57] |
Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015(6): 6911. DOI: 10.1038/ncomms7911(2015).
doi: 10.1038/ncomms7911 |
[58] | Yang B, He M H, Shishov V, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6966-6971. |
[59] | Yang Y T, Guan H D, Shen M G, et al. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Change Biology, 2015, 21(2): 652-665. |
[60] | Yang Z Y, Shen M G, Jia S G, et al. Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2017, 122(24): 13278-13287. |
[61] | Fang Xiuqi, Wang Yuan, Xu Tan, et al. Contribution of climate warming to rice yield in Heilongjiang Province. Acta Geographica Sinica, 2004, 59(6): 820-828. |
[ 方修琦, 王媛, 徐锬, 等. 近20年气候变暖对黑龙江省水稻增产的贡献. 地理学报, 2004, 59(6): 820-828.] | |
[62] | Wang Zongming, Song Kaishan, Li Xiaoyan, et al. Effects of climate change on yield of maize in maize zone of Songnen Plain in the past 40 years. Journal of Arid Land Resources and Environment, 2007, 21(9): 112-117. |
[ 王宗明, 宋开山, 李晓燕, 等. 近40年气候变化对松嫩平原玉米带单产的影响. 干旱区资源与环境, 2007, 21(9): 112-117.] | |
[63] | Xiao D P, Tao F L. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. International Journal of Biometeorology, 2016, 60(7): 1111-1122. |
[64] |
Hu Y N, Fan L L, Liu Z H, et al. Rice production and climate change in Northeast China: Evidence of adaptation through land use shifts. Environmental Research Letters, 2019, 14(2): 024014. DOI: 10.1088/1748-9326/aafa55.
doi: 10.1088/1748-9326/aafa55 |
[65] | Guo E L, Liu X P, Zhang J Q, et al. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China. Journal of Hydrology, 2017, 553: 231-247. |
[66] | Pu L M, Zhang S W, Yang J C, et al. Assessing the impact of climate changes on the potential yields of maize and paddy rice in Northeast China by 2050. Theoretical and Applied Climatology, 2020, 140(1/2): 167-182. |
[1] | MO Xingguo, LIU Suxia, HU Shi. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River [J]. Acta Geographica Sinica, 2022, 77(7): 1730-1744. |
[2] | LIU Ruiqing, LI Jialin, SUN Chao, SUN Weiwei, CAO Luodan, TIAN Peng. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series [J]. Acta Geographica Sinica, 2021, 76(7): 1680-1692. |
[3] | ZHOU Yuke. Analysis of controlling factors for vegetation productivity in Northeast China [J]. Acta Geographica Sinica, 2020, 75(1): 53-67. |
[4] | DENG Chenhui,BAI Hongying,GAO Shan,HUANG Xiaoyue,MENG Qing,ZHAO Ting,ZHANG Yang,SU Kai,GUO Shaozhuang. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964-2015 [J]. Acta Geographica Sinica, 2018, 73(5): 917-931. |
[5] | ZHOU Wei, GANG Chengcheng, LI Jianlong, ZHANG Chaobin, MU Shaojie, SUN Zhenguo. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010 [J]. Acta Geographica Sinica, 2014, 69(1): 15-30. |
[6] | XIE Yun, DUAN Xingwu, LIU Baoyuan, LIU Gang, FENG Yanjie, Gao Xiaofei. Soil Loss Tolerance for Black Soil Species in Northeast China [J]. Acta Geographica Sinica, 2011, 66(7): 940-952. |