Acta Geographica Sinica ›› 2021, Vol. 76 ›› Issue (5): 1193-1205.doi: 10.11821/dlxb202105011
• Climate Change and Land Surface Processes • Previous Articles Next Articles
WANG Keyi1(), LIU Xiaohong1,2,3(
), ZENG Xiaomin1, XU Guobao2, ZHANG Lingnan1, LI Chunyue1
Received:
2020-05-18
Revised:
2021-03-12
Online:
2021-05-25
Published:
2021-07-25
Contact:
LIU Xiaohong
E-mail:wky@snnu.edu.cn;xhliu@snnu.edu.cn;liuxh@lzb.ac.cn
Supported by:
WANG Keyi, LIU Xiaohong, ZENG Xiaomin, XU Guobao, ZHANG Lingnan, LI Chunyue. Stable nitrogen isotope in tree rings: Progresses, problems and prospects[J].Acta Geographica Sinica, 2021, 76(5): 1193-1205.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Thomas R Q, Zaehle S, Templer P H, et al. Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations. Global Change Biology, 2013,19(10):2986-2998.
doi: 10.1111/gcb.12281 pmid: 23744637 |
[2] | Gao Yang, Yu Guirui. Biogeochemical cycle and its hydrological coupling processes and associative controlling mechanism in a watershed. Acta Geographica Sinica, 2018,73(7):1381-1393. |
[ 高扬, 于贵瑞. 流域生物地球化学循环与水文耦合过程及其调控机制. 地理学报, 2018,73(7):1381-1393.] | |
[3] |
Vitousek P M, Menge D N L, Reed S C, et al. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013,368(1621):20130119. DOI: 10.1098/rstb.2013.0119.
doi: 10.1098/rstb.2013.0119 |
[4] | Craine J M, Elmore A J, Wang L, et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution, 2018,2(11):1735-1744. |
[5] | Craine J M, Elmore A J, Wang L, et al. Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015,5(1):1-8. DOI: 10.1038/srep08280. |
[6] |
Craine J M, Elmore A J, Aidar M P M , et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 2009,183(4):980-992.
doi: 10.1111/nph.2009.183.issue-4 |
[7] |
Choi W J, Lee S M, et al. Variations of δ13C and δ15N in Pinus densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water Air and Soil Pollution, 2005,164(1):173-187.
doi: 10.1007/s11270-005-2253-y |
[8] |
Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature, 2006,440(7088):1179-1182.
doi: 10.1038/nature04743 |
[9] |
Shao X, Xu Y, Yin Z Y, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quaternary Science Reviews, 2010,29(17/18):2111-2122.
doi: 10.1016/j.quascirev.2010.05.005 |
[10] |
Gerhart L M, McLauchlan K K . Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood. Biogeochemistry, 2014,120(1):1-21. DOI: 10.1007/s10533-014-9988-8.
doi: 10.1007/s10533-014-9988-8 |
[11] | Carol K. Chapter 16: Tracing nitrogen sources and cycling in catchments//Kendall C, Mcdonnell J J (eds.). Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier, 1998: 519-576. |
[12] |
Mariotti A, Mariotti F, Champigny M. L, et al. Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3- by pearl millet. Plant Physiology, 1982,69(4):880-884.
doi: 10.1104/pp.69.4.880 |
[13] |
Hobbie E A, Högberg P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New phytologist, 2012,196(2):367-382.
doi: 10.1111/nph.2012.196.issue-2 |
[14] |
Garten C T. Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. International Journal of Environmental Analytical Chemistry, 1992,47(1):33-45.
doi: 10.1080/03067319208027017 |
[15] |
Binkley D, Sollins P, Mcgill W B, et al. Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Science Society of America Journal, 1985,49(2):444-447.
doi: 10.2136/sssaj1985.03615995004900020034x |
[16] |
Koba K, Isobe K, Takebayashi Y, et al. Delta15N of soil N and plants in a N-saturated, subtropical forest of southern China. Rapid Communications in Mass Spectrometry, 2010,24(17):2499-2506.
doi: 10.1002/rcm.4648 pmid: 20740523 |
[17] |
Houlton B Z, Bai E. Imprint of denitrifying bacteria on the global terrestrial biosphere. PNAS, 2009,106(51):21713-21716.
doi: 10.1073/pnas.0912111106 |
[18] |
Högberg P. Tansley Review No.95:15N natural abundance in soil-plant systems. New Phytologist, 1997,137(2):179-203.
doi: 10.1046/j.1469-8137.1997.00808.x |
[19] | Xiong Z Q, Khalil M A K, Xing G, et al. Isotopic signatures and concentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season. Journal of Geophysical Research Biogeosciences, 2009,114(G2):G02012. DOI: 10.1029/2008jg000827. |
[20] |
Pörtl K, Zechmeister-Boltenstern S, Wanek W, et al. Natural15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant and Soil, 2007,295(1):79-94.
doi: 10.1007/s11104-007-9264-y |
[21] |
van Groenigen J W, Zwart K B, Harris D, et al. Vertical gradients of δ15N and δ18O in soil atmospheric N2O: Temporal dynamics in a sandy soil. Rapid Communications in Mass Spectrometry, 2005,19(10):1289-1295.
doi: 10.1002/(ISSN)1097-0231 |
[22] |
Nikolenko O, Jurado A, Borges A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of the Total Environment, 2018,621:1415-1432.
doi: 10.1016/j.scitotenv.2017.10.086 |
[23] |
Möbius J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry. Geochimica et Cosmochimica Acta, 2013,105:422-432.
doi: 10.1016/j.gca.2012.11.048 |
[24] |
Needoba J A, Sigman D M, Harrison P J. The mechanism of isotope fractionation during algal nitrate assimilation as illuminated by the 15N/14N of intracellular nitrate. Journal of Phycology, 2004,40(3):517-522.
doi: 10.1111/jpy.2004.40.issue-3 |
[25] |
Yoneyama T, Fujihara S, Yagi K. Natural abundance of 15N in amino acids and polyamines from leguminous nodules: Unique 15N enrichment in homospermidine. Journal of Experimental Botany, 1998,49(320):521-526.
doi: 10.1093/jxb/49.320.521 |
[26] |
Lindberg S E, Lovett G M, Richter D D, et al. Atmospheric deposition and canopy interactions of major ions in a forest. Science, 1986,231(4734):141-145.
doi: 10.1126/science.231.4734.141 |
[27] |
Elmore A J, Craine J M, Nelson D M, et al. Continental scale variability of foliar nitrogen and carbon isotopes in Populus balsamifera and their relationships with climate. Scientific Reports, 2017,7(1):7759. DOI: 10.1038/s41598-017-08156-x.
doi: 10.1038/s41598-017-08156-x |
[28] |
Robinson D, Handley L, Scrimgeour C. A theory for 15N/14N fractionation in nitrate-grown vascular plants. Planta, 1998,205(3):397-406.
doi: 10.1007/s004250050336 |
[29] |
Qi H P, Coplen T B, Jordan J A, et al. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ18O, δ13C, and δ15N measurements. Chemical Geology, 2016,442:47-53.
doi: 10.1016/j.chemgeo.2016.07.017 |
[30] |
Doucet A, Savard M M, Bégin C, et al. Tree-ring δ15N values to infer air quality changes at regional scale. Chemical Geology, 2012,320/321:9-16.
doi: 10.1016/j.chemgeo.2012.05.011 |
[31] |
Lovett G M, Weathers K C, Arthur M A, et al. Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry, 2004,67(3):289-308.
doi: 10.1023/B:BIOG.0000015786.65466.f5 |
[32] |
Savard M M, Begin C, Smirnoff A, et al. Tree-ring nitrogen isotopes reflect anthropogenic NOX emissions and climatic effects. Environmental Science & Technology, 2009,43(3):604-609.
doi: 10.1021/es802437k |
[33] |
Mclauchlan K K, Craine J M. Species-specific trajectories of nitrogen isotopes in Indiana hardwood forests, USA. Biogeosciences, 2011,9(2):867-874.
doi: 10.5194/bg-9-867-2012 |
[34] |
Bukata A R, Kyser T K. Response of the nitrogen isotopic composition of tree-rings following tree-clearing and land-use change. Environmental Science & Technology, 2005,39(20):7777-7783.
doi: 10.1021/es050733p |
[35] |
Härdtle W, Niemeyer T, Assmann T, et al. Long-term trends in tree-ring width and isotope signatures (δ13C, δ15N) of Fagus sylvatics L. on soils with contrasting water supply. Ecosystems, 2013,16:1413-1428.
doi: 10.1007/s10021-013-9692-x |
[36] |
Stock W D, Bourke L, Froend R H. Dendroecological indicators of historical responses of pines to water and nutrient availability on a superficial aquifer in south-western Australia. Forest Ecology and Management, 2012,264:108-114.
doi: 10.1016/j.foreco.2011.09.033 |
[37] |
Larry L C M, Chitoshi M, Toshiro Y, et al. Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to Black-tailed Gull (Larus crassirostris) breeding colonies. Applied Geochemistry, 2010,25(11):1699-1702.
doi: 10.1016/j.apgeochem.2010.08.017 |
[38] | Sun F, Kuang Y, Wen D, et al. Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China. Journal of Soils & Sediments, 2010,10(8):1453-1465. |
[39] |
Caceres M L L, Mizota C, Yamanaka T, et al. Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input. Rapid Communications in Mass Spectrometry, 2011,25(21):3298-3302.
doi: 10.1002/rcm.5227 pmid: 22006393 |
[40] |
Wang K Y, Zeng X M, Liu X H, et al. Nitrogen rather than streamflow regulates the growth of riparian trees. Chemical Geology, 2020,547:119666. DOI: 10.1016/j.chemgeo.2020.119666.
doi: 10.1016/j.chemgeo.2020.119666 |
[41] |
Beghin R, Cherubini P, Battipaglia G, et al. Tree-ring growth and stable isotopes (δ13C and δ15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees, 2011,25(4):627-636.
doi: 10.1007/s00468-011-0539-9 |
[42] |
Elhani S, Guehl J M, Nys C, et al. Impact of fertilization on tree-ring δ15N and δ13C in beech stands: A retrospective analysis. Tree Physiology, 2005,25(11):1437-1446.
doi: 10.1093/treephys/25.11.1437 |
[43] |
Couto-Vázquez A, González-Prieto S J. Effects of climate, tree age, dominance and growth on δ15N in young pinewoods. Trees, 2010,24(3):507-514.
doi: 10.1007/s00468-010-0420-2 |
[44] |
Hietz P, Dünisch O, Wanek W. Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle. Environmental Science & Technology, 2010,44(4):1191-1196.
doi: 10.1021/es901383g |
[45] |
Hietz P, Turner B L, Wanek W, et al. Long-term change in the nitrogen cycle of tropical forests. Science, 2011,334(6056):664-666.
doi: 10.1126/science.1211979 |
[46] |
Choi W-J, Chang S X, Bhatti J S. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology, 2007,88(2):443-453.
doi: 10.1890/0012-9658(2007)88[443:DATGAC]2.0.CO;2 |
[47] |
Bao W, O'Malley D M, Sederoff R R . Wood contains a cell-wall structural protein. PNAS, 1992,89(14):6604-6608.
doi: 10.1073/pnas.89.14.6604 |
[48] |
Doucet A, Savard M M, Bégin C, et al. Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis? Rapid Communications in Mass Spectrometry, 2011,25(4):469-475.
doi: 10.1002/rcm.4876 |
[49] | Der Sleen P V, Vlam M, Groenendijk P, et al. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: An evaluation at three sites using two sampling methods. Frontiers in Plant Science, 2015,6:229. DOI: 10.3389/fpls.2015.00229. |
[50] |
Bukata A R, Kyser T K. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environmental Science & Technology, 2007,41(4):1331-1338.
doi: 10.1021/es061414g |
[51] |
Silva L C, Gómez-Guerrero A, Doane T A, et al. Isotopic and nutritional evidence for species- and site-specific responses to N deposition and elevated CO2 in temperate forests. Journal of Geophysical Research: Biogeosciences, 2015,120(6):1110-1123.
doi: 10.1002/2014JG002865 |
[52] |
Giantomasi M A, Roig-Juñent F A, Villagra P E. Use of differential water sources by Prosopis flexuosa DC: A dendroecological study. Plant Ecology, 2013,214(1):11-27.
doi: 10.1007/s11258-012-0141-2 |
[53] | Sheppard P R, Thompson T L. Effect of extraction pretreatment on radial variation of nitrogen concentration in tree rings. Journal of Environmental Quality, 2000,29(6):2037-2042. |
[54] |
Elhani S, Lema B F, Zeller B, et al. Inter-annual mobility of nitrogen between beech rings: A labelling experiment. Annals of Forest Science, 2003,60(6):503-508.
doi: 10.1051/forest:2003043 |
[55] |
Handley L L, Azcón R, Ruiz Lozano J M , et al. Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency. Rapid Communications in Mass Spectrometry, 1999,13(13):1320-1324.
pmid: 10407318 |
[56] | Martinelli L A, Piccolo M C, Townsend A R, et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry, 1999,46(1):45-65. |
[57] |
Zeng X, Liu X, Xu G, et al. Tree-ring growth recovers, but δ13C and δ15N do not change, after the removal of point-source air pollution: A case study for poplar (Populus cathayana) in northwestern China. Environmental Earth Sciences, 2014,72(6):2173-2182.
doi: 10.1007/s12665-014-3127-7 |
[58] |
Chang C T, Wang L J, Huang J C, et al. Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate. Advances in Water Resources, 2017,103:44-50.
doi: 10.1016/j.advwatres.2017.02.013 |
[59] |
Bassirirad H, Constable J V, Lussenhop J, et al. Widespread foliage δ15N depletion under elevated CO2: Inferences for the nitrogen cycle. Global Change Biology, 2003,9(11):1582-1590.
doi: 10.1046/j.1365-2486.2003.00679.x |
[60] |
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008,320(5878):889-892.
doi: 10.1126/science.1136674 |
[61] |
Heaton T, Spiro B, Robertson S. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia, 1997,109(4):600-607.
doi: 10.1007/s004420050122 pmid: 28307345 |
[62] |
Yu L, Zheng T Y, Zheng X L, et al. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation. Science of the Total Environment, 2020,718:137242. DOI: 10.1016/j.scitotenv.2020.137242.
doi: 10.1016/j.scitotenv.2020.137242 |
[63] |
Guerrieri M R, Siegwolf R T W, Saurer M, et al. Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach. Atmospheric Environment, 2009,43(2):410-418.
doi: 10.1016/j.atmosenv.2008.08.042 |
[64] |
Saurer M, Cherubini P, Ammann M, et al. First detection of nitrogen from NOx in tree rings: A 15N/14N study near a motorway. Atmospheric Environment, 2004,38(18):2779-2787.
doi: 10.1016/j.atmosenv.2004.02.037 |
[65] | Lu Lu, Dai Erfu, Cheng Qianding, et al. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach. Acta Geographica Sinica, 2019,74(9):1878-1889. |
[ 路路, 戴尔阜, 程千钉, 等. 基于水环境化学及稳定同位素联合示踪的土地利用类型对地下水体氮素归趋影响. 地理学报, 2019,74(9):1878-1889.] | |
[66] |
Hart S C, Classen A T. Potential for assessing long-term dynamics in soil nitrogen availability from variations in δ15N of tree rings. Isotopes in Environmental and Health Studies, 2003,39(1):15-28.
doi: 10.1080/1025601031000102206 |
[67] |
Cullen L E, Adams M A, Anderson M J, et al. Analyses of δ13C and δ18O in tree rings of Callitris columellaris provide evidence of a change in stomatal control of photosynthesis in response to regional changes in climate. Tree Physiology, 2008,28(10):1525-1533.
doi: 10.1093/treephys/28.10.1525 |
[68] | An Wenling, Liu Xiaohong, Chen Tuo, et al. Atmospheric circulation information recorded in tree-ring δ18O at Lijiang, Yunnan Province. Acta Geographica Sinica, 2009,64(9):1103-1112. |
[ 安文玲, 刘晓宏, 陈拓, 等. 云南丽江树轮δ18O记录的大气环流变化信息. 地理学报, 2009,64(9):1103-1112.] | |
[69] |
Cullen L E, Grierson P F. A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Climatic Change, 2007,85(1/2):213-229. DOI: 10.1007/s10584-006-9206-3.
doi: 10.1007/s10584-006-9206-3 |
[70] |
Liu X H, Zeng X M, Leavitt S W, et al. A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: Implications for inferring variations of the regional hydroclimate. Global and Planetary Change, 2013,104:23-33.
doi: 10.1016/j.gloplacha.2013.02.005 |
[71] |
Liu X H, Wang W Z, Xu G B, et al. Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China: Evaluation via δ13C and δ18O analysis of tree rings. Tree Physiology, 2014,34(9):966-980.
doi: 10.1093/treephys/tpu067 |
[72] |
Loader N J, Santillo P M, Woodman-Ralph J P , et al. Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chemical Geology, 2008,252(1/2):62-71.
doi: 10.1016/j.chemgeo.2008.01.006 |
[73] | Liu Xiaohong, Xu Guobao, Wang Wenzhi, et al. Tree-ring stable isotopes proxies: Progress, problems and prospects. Quaternary Sciences, 2015,35(5):1245-1260. |
[ 刘晓宏, 徐国保, 王文志, 等. 树轮稳定同位素记录: 进展、问题及展望. 第四纪研究, 2015,35(5):1245-1260.] | |
[74] | Zhou Tao, Jiang Zhuang, Geng Lei. Atmospheric reactive nitrogen cycle and stable nitrogen isotope processes: Progresses and perspectives. Advances in Earth Science, 2019,34(9):922-935. |
[ 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程: 问题与展望. 地球科学进展, 2019,34(9):922-935.] | |
[75] |
Wang A, Fang Y T, Chen D X, et al. High nitrogen isotope fractionation of nitrate during denitrification in four forest soils and its implications for denitrification rate estimates. Science of the Total Environment, 2018,633:1078-1088.
doi: 10.1016/j.scitotenv.2018.03.261 |
[76] | Yan Maojun, Dong Shuhang, Zhong Xiaosong, et al. A study on particulate nitrogen isotope distribution, isotope characteristics and controlling factors in the southern Yellow Sea in summer. Acta Oceanologica Sinica, 2019,41(12):14-25. |
[ 晏茂军, 董书航, 钟晓松, 等. 夏季南黄海颗粒氮同位素分布特征及影响因素研究. 海洋学报, 2019,41(12):14-25.] | |
[77] |
Jiang S, Shi G T, Cole-Dal J, et al. Nitrate preservation in snow at Dome A, East Antarctica from ice core concentration and isotope records. Atmospheric Environment, 2019,213(9):405-412.
doi: 10.1016/j.atmosenv.2019.06.031 |
[78] |
Chen C J, Li J Z, Wang G A, et al. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition. Science of the Total Environment, 2017,609:1295-1302.
doi: 10.1016/j.scitotenv.2017.06.088 |
[1] | YIN Yunhe, MA Danyang, DENG Haoyu, WU Shaohong. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China [J]. Acta Geographica Sinica, 2021, 76(7): 1605-1617. |
[2] | HE Jin, LIU Yan, TIAN Yanguo, WANG Ze, XIAO Xin, JIANG Feng, LIU Tao, SUN Qianli, CHEN Jing, LI Maotian, CHEN Zhongyuan. Mid-Late Holocene climate change and its impact on the agriculture-pastoralism evolution in the West Liaohe Basin [J]. Acta Geographica Sinica, 2021, 76(7): 1618-1633. |
[3] | LI Cheng, ZHUANG Dafang, HE Jianfeng, WEN Kege. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia [J]. Acta Geographica Sinica, 2021, 76(7): 1634-1648. |
[4] | LI Zhe, DING Yongjian, CHEN Aijiao, ZHANG Zhihua, ZHANG Shiqiang. Characteristics of warming hiatus of the climate change in Northwest China from 1960 to 2019 [J]. Acta Geographica Sinica, 2020, 75(9): 1845-1859. |
[5] | ZHANG Jingjing, ZHU Wenbo, ZHU Lianqi, LI Yanhong. Multi-scale analysis of trade-off/synergy effects of forest ecosystem services in the Funiu Mountain Region [J]. Acta Geographica Sinica, 2020, 75(5): 975-988. |
[6] | LI Shuangshuang, WANG Chengbo, YAN Junping, LIU Xianfeng. Variability of the event-based extreme precipitation in the south and north Qinling Mountains [J]. Acta Geographica Sinica, 2020, 75(5): 989-1007. |
[7] | TIAN Jing, GUO Shenglian, LIU Dedi, CHEN Qihui, WANG Qiang, YIN Jiabo, WU Xushu, HE Shaokun. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin [J]. Acta Geographica Sinica, 2020, 75(11): 2307-2318. |
[8] | LIU Yujie, GE Quansheng, DAI Junhu. Research progress in crop phenology under global climate change [J]. Acta Geographica Sinica, 2020, 75(1): 14-24. |
[9] | XIAO Lingbo, YAN Junhui. Reconstruction of poor/bumper autumn harvest index series based on historical chorography and its relationship with climate change in North China from 1736 to 1911 [J]. Acta Geographica Sinica, 2019, 74(9): 1777-1788. |
[10] | LI Shuangshuang, YAN Junping, WU Yaqun, WANG Chengbo. Spatiotemporal variability of actual heating energy efficiency and its influencing factors in areas south and north of Qinling-Huaihe Line [J]. Acta Geographica Sinica, 2019, 74(9): 1866-1877. |
[11] | TONG Biao, DANG Anrong, XU Jian. A historical study on the patterns of spatio-temporal evolution of towns in the Wuding River Basin [J]. Acta Geographica Sinica, 2019, 74(8): 1508-1524. |
[12] | LIU Juan,YAO Xiaojun,LIU Shiyin,GUO Wanqin,XU Junli. Glacier changes in the Gangdisê Mountains from 1970 to 2016 [J]. Acta Geographica Sinica, 2019, 74(7): 1333-1344. |
[13] | GUO Chao,MENG Hongwei,MA Yuzhen,LI Dandan,HU Caili,LIU Jierui,LUO Congwen,WANG Kai. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years [J]. Acta Geographica Sinica, 2019, 74(7): 1345-1362. |
[14] | LIU Jun,HUANG Li,SUN Xiaoqian,LI Ningxin,ZHANG Hengjin. Impact of climate change on birdwatching tourism in China:Based on the perspective of bird phenology [J]. Acta Geographica Sinica, 2019, 74(5): 912-922. |
[15] | MA Danyang, YIN Yunhe, WU Shaohong, ZHENG Du. Sensitivity of arid/humid patterns in China to future climate change under high emission scenario [J]. Acta Geographica Sinica, 2019, 74(5): 857-874. |